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Introduction
Tie present study was performed to Investigate the problem of
: people in confliict over goals. With its -s/idespread occurrence within

and between nation-states, conflict, and its raduction, have become major

areas of research. Although war is the most severe type of conflict it

is by no means the only type. T7he cold war, confrvatations cn college

PR e

campuses, and political conventicns are also tupas of conflict and give
just as much impetus to this vesearch as do the wars in the Middle East
? and Vietnam.

With the exception of the internation simulatfon game (Guztazinow,
1962; Burgess and Robinson, 196Y; and Hermana and Hermanr, 19%%), the
research on conflict and cocperation has ganerally involved the use of
very abstract, and relatively simple gaming paradigms (prisonsr's
dilemma, chicken, parchesi, political conventica. and the Deutsch and
Krauss trucking game). The underlying premise of the research using
these simple, rather artificlal Jaboratory acames Is that it is necessary
to understand the basis of conflict ir. its mnst elementary forin before
it is possible to explain and contro! contlict In the reail wctld,

For this paper, "t is assumed that tonflict exisgs whonerer at
least two participants are in a situation in which orly one car fuily

achieve his goal. A more detailed discussion of confifer is presented

below but for the present this rough defirition wil' suffize to categorize
situations as cooperative or conflictive. The former are situations in
which all partles can achieve their goals simultaneously, and the latter

are sitrations in which, at best, each party achieves onlv a portion of
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hic goal and, at worst, no party achleves any part.

I~. the real world, situations vary in th: degree to which they
mani fest conflict. These conflict situations ‘ange along a continuum
from cooperative (negotiated settlement of differences, formation of
a coali.’on against a third party, etc.) to pure conflictive (war).
The various experimental paradigms used to study conflict and cooperation
reflect these degrees of conflict. Presented below is a selected sum-
mary of these paradigms that starts with games at the cooperative end
of the continuum and ends with the games at the conflictive end.

Those types involving the least amount of conflict are the parchesi
game (Vinacke and Arkoff, 1957; Vinacke, Crowell, Gien, and Young, 1966;
and Vinacke, Lichtman, and Cherulnik, 1967), the political convention
(Chertkoff, 1966; Mitz, 1969; and DeYoung and Phillips, 1970) and the
internation simulation game mention previously. The first two types
were designed primarily to study cozlition formation, and therefore lit-
tle conflict is generated in either game. The last type was designed
to simulate nation-state interaction and, thus, conflict was a possible
result rather than a necessary condition of the situation.

The parchesi game, used most extensively by Vinacke, presents sub-
jects with the opportunity to form a coalition which will insure them
of winning the game and thus sharing the payoff. The three participants
are assigned a certain amount of power, if no coalition is formed the
piayer given the most power will win. This paradigm forces the partici-
pants to form a coalition if they want to win. Although the subjects are
in conflict over the goal, they are presented an opportunity to cooperate

and divide tne payoff (partial fulfillment).

T
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The political convention game is very similar to the parchesi game.
The three or more participants are assigned a certain amount of power.
For any one to win he must possess a mcjority of the power in the game.
Generally no one player has a majority and, therefore, for anyone to win
he must form a coalition. This is in contrast to the parchesi game in
which the strongest participant can win alone if no coalition is formed.
The difference between the two paradigms lies in the reason far forming
a coalition; in the parchesi game the only rational strategy for two of
the three players is to form a coalition, while in the political conven-
tion they are required to form a coalition.

These two paradigms mirror the cooperative end of the real world
cooperation-conflict range described previcusly, Two of the three
participants are required to form a coalition to receive a share of a
divisible payoff, thus partial, simultaneous achievement of the goal,
The amount {degree) of conflict is small while cooperation is high.

The internation sim.tation aame differs from the parchesi and
political convention paradijss, and all subsequent paradigms, in the
unstructuredness of the situation. The participants can produce sit-
vations which cover the full range of conflict type situations from
cooperative to completely conflictive. The advantage of producing all
possible outcomes, however, limits the analysis and therefore the con-
clusions that can be drawn from the data. The situation does, however,
offer a starting point since it can be used to formulate hypotheses
which later can be tested in more rigidly controlled experimental settings.

liost ¢f the resea,ch in the area of conflict has centered on the

mixed-motive situation, using various types of games as experimental
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paradigms, O0f tho,e games that have been most widely used to study
scme aspect of conflict, the prisoner's dilemma (Bixenstine, Potash,
and Wilson, 1963; Bixenstine and Wilson, 1963; Lave, 1965; Oskamp and
Perlamn, 1965; Radlow, 1965; Rapoport and Chammah, 1965; Sampson and
Kardush, 1965; and Evans and Crumbaugh, 1966), the Deutsch and Krauss
trucking game (Deutsch and Krauss, 1952), and the chicken game (Scodel
and Ninas, 1960; Sermat and Greyovich, 1965; ond Ells and Sermat, 1958)
have been the most widely used. A!l tnree of these paradigwrs employ
two people, and provide an cpportunity for the participants to cooperate
with each other. This is accomplished by qiving them a choice of per-
forming one of two actions, with differential payoffs for each combinaticn
of choices made by the two participants. The genera! type of payoff
matrix for the crisoner's dilerma and the chicken jane is presented in
Table ¥. Since the trucking game does not involve simultaneous choice
by the participants, a payoff matrix is quite difficult to construct and
therefore is not presented.

Hatrix ) in Table 1 is the general matrix, with @=ach cell identi-
fied by a capital letter to allow for easier identification. Hatrix 2
in the same table presents the yenera! payoff matrix for the two paradigms,
the riumbers | and 2 designate the two alternatives. These twe alternatives
and the velative values of the "high' and ''low' payoffs differ between
the two games. Following is @ brief characterization of each experimental
paradigms' pa,ouy matrix. A more detailed presentation of these types
of payoff matrices has been made by Rapoport (1953, 1968) and Rapuport
and Guyer (1966).

In the prisoner's dilemma, alternative 1" is the choice of cooper-

e et e s Sk 3 B A e il e bR e B L s @
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Table 1. General and Particular Payoff 'atrices for the Prisoner's
Silerma ang Chichen Gancs

datrix 1. A General !tatrix with Each Cell ldentified by a Capital
Letter

Hatrix 2. A General Payoff !fatrix for the Prisoner's Dilemma and
Chicken Games

Y
1 2
e L e L ‘
X high e low .
2 B low T~ low |
high ————__ | low e
datrix 3. A Particular Payoff Hatrix for the Prisoner's Dilemma
Y
1 2

X b 4+10¢ -10¢
2 }‘\\-lw = . -
| __+15¢ - 5¢ T~

——

Matrix 4. A Particular Payoff !latrix for the Chicken Game

Y
| 2
g *l0¢ T *I5¢
L #10¢ TTe—— “10¢ Tt
X — T T0¢ ~T00¢
2 1 4l5¢ Tt e | =100¢  TT——_
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ating with the other piayer, alternative 2" is the choice of defecting
to the police. 1in cell A, both plavers cooperate and receive +10¢: in
cells B and C, on: player cooperates and the other defects, resulting
in -10¢ for the cooperator and --15¢ for the defector; in cell D, both
players choose alternative 2 and receive a ~5¢. The preference struc-
ture for player X is 3 > A >D >C, while player Y's preference structure
isC >A 5D >B. \lhere the preference structure is the order in which
the players desire the outcomes in the particular cells. Given the
above structure, player X prefers the payoff in cell B to any other

payoff, and prefers any other cell's payoff to the pavoff of cell C.

The point of interest, in the choice structures, is the congruence of
the second preferences. It is this congruence that allows for cooperation
between the participants.

In the chicken game alternative "1'" is the cooperative choice and
alternative ''2" is the noncooperctive choice. Thus, in cell A, both
players cooperate and ceceive +10¢; in cells B and C, one player co-
operates, while the other doss not, resulting in the cooperator re-
ceiving -10¢ and the noncooperator receiving +15¢; and in cell D, neither
cooperates and both receive the highly negative outcome of -100¢. The

preference structures for the two players are as follows: X: B >A > € >

D; and ¥Y: C >A >B >D. The difference between the prisoner's dilemma
and the chicken game is the ordering of the last two preferences for

the two players. |In prisoner's dilemma the payoff in cell D is preferred
by both players ove: the payoff in B for player Y, and C for player X,
while in chicken payoif D is the least preferred outcome for both players.

In terms of the:payoffs, the difference between the prisoner's

B e
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dilemma and the chicken game is the relative sizes of the low payoffs
in the two low cells for each player. In the chicken game the low
payoff in the low-low combination (cell D) is much lower than the lcw
payoff in the two high-low combinations (cells B and C). This is in
contrast to the prisoner's dilemma where the low payoff in the high-

low combinations (ce!ls B and C) is much lower than the payoff in the

low=-low combination (cell D).
In general the mixed-motive payoff matrix (matrix 2 Table 1) can
be described in the following manner; one combination of choices results
in a low payoff for both participants (cell D), one combination in a
moderate payoff for joth participants (cell A}, and the remaining two
combinations result in a lo~ payoff for one participant and a high
payoff for the other, with the receiver of the high payoff reversed
11 the two high-low conditions (cells B and €). Thus the payoff matrix
allows for .ooperation, by providing a cell in which both participants
receive a moderate payoff, and conflict, since any movement from the
cooperative cells results in a lower payoff for at least one participan:.
linst of the studies performed with these two paradigms, as with
the pzrchesi and political convention paradigms, have been concerned
with Jhe o..i2nsions of cooperatiu~ rather than the exploration of con-
flict., Little resec~ch has been aimed at the interpersonal process
that arises when people are placed in a situation in which they have
no opportunity to cooperate and, therefore, must compete. This type
of pure conflict (no cooperation between participants), represented in
the real world by nuclear war and the duel to the death, has been

labeled pure uelative conflict by Cole and Phillips (1949) and Cole,
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Phillips, and Hartman (in preparation). Uelative conflict is deiined
as a n participant system in which there is a siugle, indivisible pay-
off for all participants. This means that at most one participant can
receive the payoff (achiwve his go-.l) and all may lose. !lote that it

is not a zero-sum game since there is the possibility that all parties
may lose, but it does contain a constant sum ccndition in which when one
person wins, all others lose.

This type of conflict falls at the extreme ¢nd of the cooperation-

conflict continuum defined previously. [lo cooperation between partici-
pants is possible because the payoff for each participant is not
divisible. This is an important aspect of the situation; it is the
indivisibility of the payoff which distinguishes pure conflict from the
mixed-motive, or cooperative type situations (Boulding, 1963; and
Schelling, 1959). lio player is able to achieve a partial goal; either
he achieves his total goal or ha achieves nothing.

An experimental game paradigm, the truel, has been designed to

study this extreme conflict situation. Introduced by Shubik (1954)

and subsequently emplcyed by illis and Long (1967) and revised by

Cole (1969, 1970), the truel is a game involving three p!-.yers, each

of whom begins the game with a particular number of points. Prior to
the start of each game, the experimenter assigns a certain number of

E points ad a label to each player. The game itself consists of a num-
SN ber of moves. On each move each player must destroy a point belonging
to one of the other players. This is accomplished by each player
secretly indicating his attack choice to the experimenter, who, when atl

three players have indicated their choices, annources who attacked whom
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and removes a point from the attacked player's totai. This procedure
2llows each player to make his choice independently, without the
knowledge of who is going to attack him on that move.

The game continues until only on: player has points remaining.

He is the winner of the game. If the two players remaining, when the

first player is eliminated, have the same number of pcints, or if all

of the players are eliminated on the same move, the jame is a tie with
no player declared the winner.

The payoff matrices for the three person prisoner's dilemma
(matrix 1), a three person chicken game (matrix 2), and a truel in
which all three players have one point (matrix 3) are presented in
Tabie 2.' The values presented in each cell represent the payoffs to
the participants. The first component in the vector in each cell re-
presents the payoff for player X, the second for player Y and the third
for player Z. The cells are labeled from A through H and the preference
structures for the three players are listed below each matrix.

As the three preference structures listed below matrix 3 indicate,
each player has two types of outcomes; a most preferred and a least
preferred. For the three players there are no points of congruence for

the most preferred cells and only two points of congruence for the least

illote that the truel is a three person game, wnile the other two
paradigms have generally been two per-on. The payoff matrix for the truel
isa2x2 x2, while the payoff matrix for the other two paradigms is
usually 2 x 2. llowever, for the purpose of comparison, the prisoner's
dilemma and the chicken game were expanded to a three participant system
and, thus, their payoff matrices were expanded to a 2 x 2 x'2,
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Table 2. Tﬁ? tormal Payoff Matrices for the Three Person Prisoner's
Jiicmma, Chicken, and True! Games.

atrix 1. Prisoner's Nilemma

IPrayer 2 ‘ T _ o 2
'P.ayer Y 1 { 2 1 2 _
| .
; 1 ;(+|O,+|0,+|0)§ (=10,+15,-10) (-1n,-10,+15) i (-lO,*q.'S.)l
X ! A { B c i\ ) !
- ;_......__.-.‘.._ - l - b ‘
I 2 ‘(4-‘5,']0,"'0) ‘ ('5,";,"0) ("5;"01-5) (-»5,-;,-‘;) I
o L F G H .
Player X: F >A > Fwfiz=!Y >83=C=0D Alternative | = cooperate
Player Y: " > A >D = F s H>C=F=h 2 = not cooperate
Player Z: € >A >N =G =H >N =0 =F

- —

latrix 2. Chicken fiome

Plaver 2. ! 2
'Pl¥ye117r | 2 1 | 2 K
; !
: ] ,(+10,+lo,f|o) “(-10,+15,-19) i(-1n,- IO +15) k 19,- IOO.-IOO) !
X ' A i n |
l' i !
2 ’(+IG,-|0 o) i (-100,- !on ~.o)K 17,10, ,no)k 1m, 1o, ,qq)!
E
Player X: E >A >B=C=0D >F = = Alternative | = coonerative
Player Y: R >A >C = FE =6 >0 ==F = | 2 = not cooperative
Player Z2: C >A >B=Ff=F >D=(G =}

Matrix 3. True!

lPlazpr Z, X Y ;
‘Player Y: X ! 7 , i Z i
' ! |
Ly 1 (-10,-10,415)  (<10,-10,-10) | (~10,-10,415) : (+15,-10, ~19)
i * |
| A ' ! c ‘ N .
' | . 4
{2z !( 10 +|,, -10) i( 10 +15, 0)| (~19,-10,-1n)| (+15,-10,-10) |
I " —
Flayer X: D=4 >A=aDlw=wC=EFE=F=GC
Player ¥: F = F >A =B uw(C=D=C=H
Player 2: A= C >P = N=sf=fFum(GuwH

RS- Y
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preferred cells. Player X prefers cells D and H to all cther outcomes
while player Y prefers cells E and F to all others and player Z prefers
cells A and € to all others. It is the dichotomous preference structures
i and the noncongruence of the first preferences caused by the indivisibility
of the positive paycff, that makes this si’uation one of pure conflict.
A comparison of the payoff matrices for the two mixed motive para-
digms with the payoff matrix for the truel reveals the differences
between the three types of paradigms.
in both matrix 1 and matrix 2 the three person prisoner's dilemna
and chicken game, respectively, alternative ''1'' is the cooperative
choice and alternative ‘'2'' the noncooperative one. As was pointed out
in the discussion of the 2 x ? payoff matrix, there is a comon second
choice for all of the preferunce structures. The difference between
the chicken game and the prisonzar's dilemma is the ordering of the last
two sets of preferences. These orderings can be compared in Table 2.
Those preferences of the same value in the matrix are treated in the
preference structure as being of equa! desirability. The difference
between the mixed-motive situation and the pure conflict situation is
the absence in the latter's preference structures of a common point in
the orderings for the three players.
The true! jame has the basic requirements for uelative conflict:
an inability of the participants to achieve their goals (winning) sim-

ultaneously.2 In the actual playing of the game the motivation for

2 . . . .
it might be argued that the basis of all conflict is the belief
of the participants that they cannot achieve their respective gocls
simultaneously.
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winning is assumed to be instilled by a mone:ary reward for doing so.
Hith motivation established, and an indivisible payoff structure, with
at most one winner, the truel satisfies all of the requirements for
uelative conflict.

This paradigm has two important properties in that jt can be ex-
tended to any number of players, and it characterize, the pure conflict
situation, which has been ignored to the present time. By breaking the
conflict situation down to its most basic elements, however, the paradigm
overlooks factors that affect conflict situations. Some of the factors
that are ignored are: (1) the effect of secondary goals, {2) the
formation of coalitions, and (3) the ability of the participants to
avoid the conflict situation. Despite these and other limitations
that introduce some degree of artificiality into the situation, it
seems an excellent starting point for the investigation of pure conflict.

The Investigation of Conflict through the Truel

One aspect of pure conflict that is quite easily investigated
through tne use of the true! is the effect of power distributions upon
the conflict process. If it is assumed that the number of points
possessed by each of the players represents the power of that player,
then any distribution of points can be classified according to the
eight types of power distr!.uzicns defi=zd by Canlow (1536, 1279, and
1968) and oresented in Table 3. Although Caplow only aunalyzed the
consequences of each of the distributions for the cooperative type of
situation, an extension to the pure conflict situation may prove pro-

fitable, In an attempt to discover some of the consequences of the

various power distributions, several of them representing Caplow's
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type 2, type 3, and type 5 were constructed. The exact distributions
are also presented in Table 3 and are discussed in more detail later.
Another aspect of conflict that can bhe investigated through the
use of the truel is the detesminants of attack choice, i.e., the reasons
why a player will choose to attack a given other player on each move of
the game. Since in a truel, each player is forced to make just such a

choice, and he must do so with a linited number of cues availabe it is

Table 3. Ciplow's Zlassification of Typos of Power Yistributions
and the istributions Lsed in the Zzncrirent.

Types Power Distributions Distributions of Points

] A=B=C( NOIIE

2 A>B=C (A<(B+¢C)) (24,9,9)

5 A<B=C (19,19,4)

4 A >B=C (A>(B~+c)) HRILE

5 A>8>C (A<(B+cC)) (22,9,3) (20,3,7) (13,3,6)
(15,9,5) (15,17,4) (17,15,4)

_ (16,13,4) (05,11,4) (14,9,4)

6 A>8 >C (A B +¢C)) {I01E

7 A >B >C (A= (B +C)) HOUE

8 A >B=C (A= (B +C)) HOUE '

possible to present a limited set of possible bases for this decision.
then persons engage in uelaiize conflict, they have many cues upon which
to make their decision of whom to attack. Uithin the truel this set of
cues is reduced to a finite number, with those cues being immediately

present or from several moves previous. Several of the possible attack
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strategies that may be used are presented below.

A player may attack the player who attacked him last, or he may
attack a player who had not been attacked in several moves. A player
also may alternate his attacks from one player to another or continually
attack the same player. Several such heuristics may be used by the
participants in selecting an attack choice. Although these heuristics
do not seem to be the most rational approach they stil] may be used by
the players to make thelr decision. However, iIf It Is assumed that
the participants in a truel are rational, then strategies of play rather
than heuristics of attacks would be the most likely to be employed.

Phillips, Hartman, and Klein (1970) presented three strategies of
play that might be used by participants in a truel: (a) the fair play
strategy; (b) the threat minimization strategy; and (c) the dyadlé?
competition strategy. The fair play strategy assumes that a player at-
tacks the stronger of his two attack choices. This means that the
strongast player-attaz4s .5 secund ctronvast. -n bt second aadiehird
styon,nst ployvars ‘attacy the stron_est. 12 ti2 thra.t nininization
strategy, a player maces tie attazk that mininizes the throat to his
survival., 1t is not the casz that tihis Is 2iwys thn stroniar of the
two attack choices. (¢ 1as baen dcr}onstrezﬁf.d By otz and "illips (1967)
that the strongest player is In u nosition iwher2 ha is Vikaly %o be
tne object of the other t#o piayer's attas's. T2 stroagnst nlayer
attaclis the wcaxest player because this nlayar Joes just as muc! Jamage
and is removed fron the jane ~wore quizitly than s the second strongase
nlayer, 32y eliminating the v2akest dlayer and thus reducing the number
of atzacis madc on hir., the strongest slayar ~inl-lzes the thraat to

his survival in the fewest number of moves. The threat minimization
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strategy for tte other two power positions results in the same attacks
as in the fair play strategy with both players attacking the strongest
player.

in the dyadic competition scrategy tite players attack that player
who is closes’ to them in the power structure. Both the weakest and the
strongest players would attack the middle power position. The person
in the middle position would attack the player--sometimes the strongest,
sometimes the weakest--whose power was closer to his own.

Shubik (1954) pointed out that when the participants in a three
person duel differ with respect to power, the more rational strategy
is to attack the stronger of cne's two attack choices (the fair play
strategy). With respect to the truel, the power of a player is the aum-
ber of points he possesses and thus, ror each piayer, a more rational
strategy is to attack that player of his two atta-k choices who has the
greater number of points. The assumption, that all three players emplcy
the fair play strategy, was used to build the mathematical model of the
truel (and therefore of uelative conflict) presented below.

A ‘odel of Attack Choices

A one parameter model is proposed :o account for the interpersonal
process that operates when three pe,sons engage in a truel. The model
generat:s all predictions using the estimated probability (P) of at-
tack..] the stronger of each player's two attack choices. If the two
attack choices of a player have the same number of points (power), a
orobatility of attacking each player is set at .50. The set of three
numbers representing how many points each of the three players has is

called the distribution of points. This distribution is represented by
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a three component vector, with the numbers a..anged in a decreasing
order of magnitude. As an example, if one player had 13 points, another
7 points and a third 20 points, the vector representing the distribution
would be (20,13,7).
A characteristic of the process that is of interest is the pattern
of choices made by the participants on each rove of the game. Since
on every movez 2ach zlaycr is regiired to attack onz of the other two
players, it is possible to characterize combinations of attacks within
the truel in terms of who received an attack. The set of three attacks
made on any one move is called the attack vector, with each number in
the vecvor being the number of times a particular player received an
attack on that move. The order within the vector is one of decreasing
strengtk, i.e., the player wiih the most points is listed first in the
vector and the player with the fewest points is listed last. For ex-
ample, if the distribution of points was (10,9,3) an attack vector of
(2,1,0) would indicate that the player with 10 points had been attacked
twice, the player with 9 points had been attacked once and the nlayer
with § had not been attacked at all. After this combination of attacks
the distribution would be reduceu to (8,3,3) because two points were
taken from the player with 10 points, one point from the player with 9
noints and none from the player who had 8 points. In the truel there
are seven such atiack vectors and they are presented in Table !.
Thare are two characteristics of interest in eack distribution of
points. They are called the disparity of relative strengths and the
projected level of equality. The disparity of relative strenqths is

discussed at length here, and the explanati. . of the projected level of
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Taule 4. The Seven Possible Attack Vectors

A A 1 * LS R L1
1 2 0 1 ] 0 2
1 } 1 0 2 2 0
1 0 2 2 0 i ]

equality foilows.

The disparity of <lative strengths (DRS) is a term used to describe
how far apart the players are in the number of points they orssess.
The term can be quantified by using the diffzarences between the players
as the index of disparity. For example, the (10,9,8) distribution has
a lower disparity of relative strengths than does the (15,9,3) distri-
bution. llot only is this evident from visual inspection, but the index
of the DRS is (1,1) for the first distribution and (6,6) for the second.
The index was calculated by subtracting ‘he second component from the
first and then subtracting the third from the second. These two dif-
farences were then placed in a two component vector to give the DRS for
each of the distributions. Further, it is possible to sum the two
components to obtain a scalar quantity that gives 2 rough index of the
DRS for any distribution. Later, an easiger method for determining the
DRS is described.

To simplify referencing, each attack vector is given a single
letter label, The letter | is assigned to the (1,1,}) attack vector

to indicate that this attack vector, when applied to a distribution of
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points, maintains the differences that exist between each of the three
players. In other words, the | attack vector maintains the disparity of
relative strengths,

3f the six remaining attack vectors, the vector (2,1,2) is assigned the
letter J. J°! designates the (0,1,2) vector since it is the only vector
that, when applied to a distribution of points, returns the disparity of
relative strenqgths to the level held prior to the application of the J
vector. The sum of a J and a J—' attack vector is (2,2,2) or two | vec~
ters, which by definition maintains the disparity of relative strenqgths.
The remaining attack vectors are assigned letters by the same process. A
vector is chosen and assigned a letter and the attack vector, that when
added to it maintains the DRS, is given the inv. -se of that letter. A}l
of the vectors and their labels are listed in Table 4.

The projected level of equality (PLE), the second characteristic of the
distribution or points, describes the nearest point at which all of the
players w’ !l have the same number of points. The PLE can only be calculated
for distributions in whicih the sum of ti. components is divisible by three.
It is only these distributions that can be reduced to equality through com-
binations of three attacks and therefore by the application of attack vec-
tors. An example of a distribution that cannot be reduced to equality by
attack vectors is {5,3,2). !o combination of attacks can reduce this
distributior co another distribution in which all the players have an equal
number of points. The attack vector which brings it nearest to equality is
the (2,1,0), or J vector. After the application of this vector the distri-
bution is reduced to (3,2,2), and after the second application of this vec-
tor, and the necessary rearrangement, the distribution is reduced to (2,1,1).

At this point the application of any attack vecior will end the game,

Gn
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since any additional attack must eliminate either one or two (but not
all three) of the players. Since three points must be taken away from
the triad on any move, and there are four points remaining, it is not
possible to react a~ all equal state beforec one of the players is elimin-
ated. The projected level of equality of a distribuiton is that dis-
tribution which is the nearest all equal distribution. The PLE of a

distribution is characterized by a single number, the number of points

each player would have if the nearest all equal distribution were
reached, The (11,9,7) distribution, for example, has a PLE of 7, be-
cause after the application of two J vectors the distribution is re-
duced to (7,7,7).

The distribution of points which any triad begins a truel is called
the initial distribution. |If tiis distribution is divisible by three
then it can be described by a sequence ¢© attack vectors. Any subse-
quent distribution (those caused by attacks made within the triad) is
then described by the sum of the attack vectors used by the triad and
the sequence of attack vectors used to describe the initial distribution.
Thus any distribution of points whose sum is divisible by three, can
be described by a sequence of attack vectors.3 This sequence is com-
posed of the attack vectors used by the triad in the playing of the
game and the attack vectors used to describe the initial dist ibution.
This sequence is called the decomposed distribution of points. The

sequence with the | attack vectors deleted is called the deleted decom-

3The necessity of having ta=s Jistrihution divisible bDy three is
discussed later.
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posed distribution of points. Later these two seauences will be shown
to bs composed of at mest two attack vectors. This reduction results
from the relationshins between attack =c+nr> that are discussed next.

There .are certain relationships that exist between attack vectors.
If two attack vectors, a and b, when apnlied to a distributicn, have the
same effect as another attack vector, ¢, added to the | vector and then
applied to the same distribution, then the two vectors, a and b, are
defined as reducing to the i\hird vector, ¢. The reduction is based on
the ‘act that the two vectors, a and b, have the same effect on the dis-
parity of relative strengths as does the single attack vector, c. The
application of the single a..ack vector to a distribution does not result
in the same distribucion as the appiication of the two vectors; it is
only the differences between the players that a~e the same 'n the two
dist:ihutions. |If the | vector is applied to the distribution of the
single vector. ¢, then the number of points controlled by each ov the
piayers would be the same as if the two vectors, ¢ and b, had been ap-
plied. The rule for reducing ottack vectors is given in terms of their
labels. Any two vectors raised t. the same power (1, or -1) and of dif-
ferent letter will reduce, when added together, to the vector of the
remaining letter raised to the inverse of their common power. An ex-
ample of a reduction is: J + K= L", o- (2,1,0) + (1,0,2) = (i,1,1) +
(2,0,1) or 1 + L-‘. Since the | vecter has no effect on the disparity
of relative strengths, the difference between the disparity of relative
strengths of the o~ ::,nal distribution and the distributicn resulting

from the application of the ! and K vectoirs is equivalent to the dif-
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! vector alone would produco.k The resulting dis-

ference that the L~
tribution of points, after the application of the L-' vector and the |
vector, is the same as the distribution resulting from the application

of thc J + K vectors. All of the attack vectors and their relationships
are presented in Table 5. '

With the definition of the attack vectors, the definition of the
disparity of relative strengths, and the rules for the combination and
reduction of attack vectors, it Is now possible to describe whole
distributions of points in terms of two attack vectors. Since it Is
not possible to add more than two vectors together without two of them
being of the same letter and therefore combinable, or of the same power
and therefore reducible, a two component vector will suffice to character-
ize any distribution of points. Because the attack vectors are combined
on the basis of their effect on the disparity of relative strengths,
this two component vector defines the minimum number of attack vectors
necessary to reduce the distribution to equality. The sum of these two
components s a simple index of the DRS for any distribution. This two

;.- lement vector is called the state vector.

When.givin 5 distribution of noints, it !5 noscitie ug dotormimaiie
the state vector of this distribution and the constituent attack vectors.
The state in which 'l the players have the same number of points is de-
fined as the (0,0) state vector. With this definition it Is now pos-

sible to describe how to calculate the state vector of a distributiosn.

If one starts from an all equal state, the state vector of any subsequent

hThe equal sign indicated that the elements on each side are equal
with respect to the DRS.
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Table 5. The Relationships Detween Attack Vectors

1

Combinaticns:
2 K o 2 1 | S TS N
1+l a2l + 1 2+0=1+1 0+2=14+]
) ] N 1 i 1 ) 2 0 ] 1
P I Lt e 1w K+k 1= 1+ 1
Reductions:l Summary
2 1 2 1 o 1 0 1 -
1+0=0+1 1+2=2+1 J+Km|
0 2 1 1 2 o 1 -
- -1 J~+K = L
J+ K=L'+1 JI4K = L+ )
' ',
2 0 1 1 0 2 1 1 -
1+2=2+1 1+0=0+1 J+LaK
0 1 o0 1 2 1 2 1 -1 -
l SR S o=k
J+ Ls=K + 1 ;L = K+
1 0 0 1 12 2 1 _
0+2=1+1 24+ 0:=14+1 K+L=J
2 1 2 o 1 o 1 R
- _‘ _l K "'L -J
K+ L= +! K '+l =J + |

A1l Possible Types of States®

-1

2070 @'y ekl o !

L @ty !

L)
W

@,k @l ek ey @y @h

IThe numbers r.present the components of the attack vectors.,

2if the two components are equally represented, for example
(2471,7L), row one represents all possible types of states.
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distribution is the reduced combination of all the attack vectors used
to produce that distribution. A few examples of distributions and
their state vectors should clarify the concept. If the first five
moves after an initial state of (0,0) were; J, K, K", L and K, then
the state vector of the resulting distribution would be (0,0). The

above result is arrived at by the following sequence of reductions;

J+KeL!

—

, then Lf' + K1 = J,J+L= 5?', K-' + K= 1. It is through
a sequence of reductions such as-this that one determines the state of
a distribution. Further examples are given in Table 6.

If one does not start from an all equal distribution the problem of
finding the state of the distribution is complicated by t'ie fact that
the state of the initial distribution is not known. Since it is im-
possible to calculate the state of any subsequent distribution without
knowing the state of the initial distribution, it is necessary to have
a method by which this initial state may be defermined. One such method
is to add to the distribution the attack vector which produces the maxi-
mum reduction in the disparity of relative strengths.

The state of any initial distribution is the reduced sequence of
attack vectors, which when added to the initial distribution produces
the nearest all equal distribution from which the initial distribution
is reachable. Again an example should clarify the point. If the initial
distribution is (10,9,8), the attack vector which reduces the disparity
of relative strengths the most is the {0,1,2), or J-V vector. ‘ihen the
37! vector is added to the (10,9,8) distribution, the resulting dis-

tribution is (10,10,10), the nearest all equal distribution from which

the (10,9,8) distribution is reachable. The state of the initial dis-
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Table 6. Zramples of the Detcrminatior of the State of a Distribution
with an lnitial State of (0,G)

Reductions:

lnitial State (0,0)

1

Attack Vectors: L, L, K ', J, J

(0,0) + L
(L,o) + L
(2L,0) + K
LKy +

L)+ o

-1

)

(L,0)
(2L,0)
(2L,k1)
(2K ,1)
L,k

Resulting State (ZL,K-l)

State Vector (2,1)

Reductions:

Initial State (0,0)

Attack Vectors: J, J", L, K

(0,0) +
(J,0) + U
(0,0) +
(L,0) +

(v,0)
(0,0)
(L,0)

w0

Resulting State (J-‘,O)

State Vector (1,0)

e s
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Table 7. Examples of Obtaining the Initial State of a Distribution

Initial Distribution of (10,10,7)

(10,10,7) + (0,1,2) = (10,11,9)
U = o

(10,11,9) + (1,0,2) = (11,11,11)
who + k =@l
Initial State is (J7', K)

State Vector is (1,1)

Initial Distribution of (13,8,6)

(13,8,6) + (0,1,2) = (13,9,8)
-1

SV = w0
(13,9,8) + (0,1,2) = (13,10,10)
Whoy+ ' <@l
(13,19,10) + (0,1,2) = (13,11,12)
@ho+ 7 =@
(13,11,12) + (0,2,1) = (13,13,13)
G+ L = (307N

Initial State is (357%.1)

State Vector is (3,1)
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tribution is (3°1.0). (Further examples of the determination of initial

states are presented in Table 7.)

All distributions subsequent to the initial distribution are dascribed
by the reduced combined sum of the initial state and a!l the attack
vectors produced by the triad. (If the sum were not reduced it would be
the decomposed distribution of points discussed earlier.) An example of
the determination of a state when the initial state was not (?,?) fol-
lows. |If the initial state was (ZJ‘I,K) and the attack vectors produced

by the triad were J,K-' and L the resulting state would be determined by

the following reduction sequence; (ZJ-',K) +J=( ,K), (J-',K) + KT =

5

(J"',O), (J-',O) +L= (J~',L). Thus the resulting state would be (J“,

L). MNore examples of the determination of a state when the initial state

is not (0,0) are presented in Table 8.
Table 7.
Examples of the Determination of the State of a Distribution
with an Initial State Other Than (0,0).

Initial States (J-',O) (ZJ",L)
Mttack Vectors J, K, L L-l, J, L
(w'0)+4= (0 (2077,0) + L7 = (2071,0)
(0,0) + K = K (2077,0) + 9 = (3710 =
(K,0) + L = (J"',o) lo+t=(h
Resulting State (0 (J-I.L)
State Vector (1,0) (1,1

5Again the equal sign indicates equality of DRS.




27
The resyltina reduced sum of attack vectors constitue the state of
the distritution. This state will be conposed of a single type of attack

vector, or some conbination of two types of attack vectors. These two

types will be any two vectors of different letter and power. (A)1 pos-
sible states are listed at the bottom of Table 5.)

The number of each type of attack vector in the state of the dis-
tribution, when listed without the type of vector, is designated the state
vector. The state vector, then, is the pair of numerical components of
the state of the distribution. "y convention the larger of the two com-
ponents is 1isted first in the vector. There are only two types of state
vectors: a pure state in which only one type of attack vector is needed
to characterize the distribution, and a mixed state in which two types
are needed.

At this point it is necessary to make an assumption about the re-
arrangeability of the power positions within the triad. It is assumed
that it is of no importance which player is in which power position over
the course of the aame. {7, during the game, a power position switches
from one player to another, the states are treated as if the same player
was in that position throughout the game. This results in a distribution
of points always being listed in a decreasing order, reqardless of which
player is in each position. The rearrangeability assumption allows for
the considerable simplification of the model which follows.

"ith the stipulation that the distribution of points always be
listed in decreasing order of magnitude, all state vectors have J-' as

a basis. It is clear why this is so when one looks at the J ' attack

vector, (N,1,2), and considers the rearrangeability assumption. ‘lhen the
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distributions are arranged in descending order, any pure state will be
some number of J-' vectors. For~ instance a hK"' state representing a
distribution of (5,13,9) when rearranged as (13,7,5) is a Byl state
(four times (0,1,2) equals (,4,%) added to the distribution results
in a (13,13,13), the nearest all equal state.

All mixed states also have J" as a base, again due to the rearranne-
ability assumption. For example, a (3,1) state vector composed of (31‘1,
K) could represent a (12,29,15) distribution. Upon rearran_ement it
becomes a (71,15,13) distribution or a (3J'|, L) state. The state was
determined in the same manrer as all previous states have heen. by
adding the attack vector which produces the qreatest reduction in the
disparity of relative strengths until an all equal state is reached.

A1y distribution can be rearranged so as to have J-' as a basis. As a
result of the rearrangeability assumption, only three types of attack
vectors are used in the mixed states (J'!, K or L) while only one is
used in the pure states (J-|).

Probability Fquations for Cach Attack Vector and Possible Transitions

Fach attack vector is produced by a unique combination of attacks,
with the exception of the | vector which is produced hy two such com-
binations. From these unique combinations of attacks, equations pre-
dicting the probability of any attack vector occurring are derived by
constructinc a probability trce, with P being assicned to the prohability
of attacking the stronger from any decision point. The tree is shown
in Figure 1. The letter designates which player is making the decision.

It is assumed that x >y> z.
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Figure 1, Prebabliity Equailons and Labe's for fach Attack Vector.
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Beczuse there are only seven attack vectors, each state vector can
be transtcrmed to a maximum of seven different states. 1~ (1,]) desiqnates
any arbitrary state vector, then the seven possible st.tes after the ap~
plication of each of the attack vectors listed in Table & are: {i,}),
(i+1,5), (1-1,5), (i,j+1), (i,j-1), (i~1,)#1), and (i+1,}-1).

Vhich transition is produced Is determined by the types of attack
vectors which make up the state, and the 2ttack vector which s applied
to {t. Different attack vectors have differential effects on different
states., For instance a state vector composed of (2J",K) will go to a
(2,0) state vector with the appllication ot a K-| attack vector, but a
(ZJ".L) will go to a (2,1) with the application of the same K! attack
vector.

If the state has a zero as the second component {pure state) then
at most five states are reachable from it, since both transitions re-
suiting in 2 state with j-1 s the second component are, by definitéon,
nonexistent, 'lo attack vector when applled to such a state, can reduce
the second component (7) tc a J~1 or =1. A -1 has no meaninq, since it
implies that a negative of an attack vector !s needed to describe a
distribution.

The all equal state Is the exception to the sbove transitjon states.
Only two states are reachable from the (0,0) state and they are the (,0)
and (1,0) states. It }s qulte clear why this Is so, since no transition
state which has a I-1, or & J-1 as an element s possible. As stated
above, no attack vector when applied to a (0,0) state, can produce a -
in elther position. The application of any attack vector, except the |

vector, increases the state of the distribution fron (0,0) (o (1,0). The
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sum of any attack vector added to 0 is the attack vector. The {1,0)

state also has a restricted transitfon range with the (I-1,6j+1) state

. being undefinz, du> to the rastriction tazt tic larjest elemme bze

listed first in the vector.

As was menticned previously, the all equal state has transition
probabilities that are independent of the estimate of P. Since all of
the players have the same number of points in this state, they are assumed,
for attack purposes, to be indistinquishable from one another, Since
they are incistinguishable, the probabllity of attacking either of the
attack choices for each player is ,50. As was stated above there are
only two states reachable from the all equal or (0,0) state: the same
(0,0) state or the (1.9) state. The (0,0) state !s reachable only
through the application of an | attack vector, of which there are two
(see Figure 1). The prubability of each ! vector is .125 (.50 for
each of the three decision points in the tree). The total probability
of remaining in the (0,0) state Is the sum of the two | attack vectors,
or .25. The probablility of going to the only ®\-r rz:chabla state,
the (1,0) state, is one minus the probabllity of remaining In the (0,9)
state, or .75.

The equation for any transition from a state |s determined by the
attack vector or vectors which produce that transition, The attack
vectors which produce each transition and the resulting equations are
shown in Table 9, \Ujth .l"I heing the basis of all of the states onlv
this single sat of equations Is needed to predict all possible transi-

tions., Although the K, L, K". L~ attack vectors produce different

transitions on mixed states depending on which attsck vector ( K or L)

b
*
il
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is the second component of the state vector, the resultinn equatiuns
are the same due to the fact that the K and L vectors have the same

Vand 7! vectors.

equations, as do the K
This transition taple offers a general framework within which data

can be analyzed. All of the types of states encountered in a set of

data would he listed in the first column of the tahle and the frequency

of each transition from these states would be indicated in each cell.

The cells could then be compared with respect to the observed and ex-

pected frequencies using a chi-square goodness of fit test. The ex~

pected values are calculated from the predicted probability of the transi-

tion (calculated using the estimate of P from the data and the tran-ition

equations presented in Table 9) and the marginal frequency for each state.

The ‘lodel Aximotized

low that the model has been described, it s axiomatized to pre-
6
sent its logical organization.
Definition 1. The three numbers representinn the number of noints

each player has is called the distribution of polnts. This distribution

of points is the three component veztor D.

Definition la. If the distribution of points Is arranged so that
the three components are in a decreasing order of magnitude, the vector
will be called the ordered distribution of polnts D¥*,

Definition Ib. The differences which exist between the three

componerits in the vector 0* are calied the disparity of relative strenqths

q« simpler dxtomization of this model was forrulated by Fhilllps,
Klien, and Hartman (1970).

B\
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and Is represented by a two component vector (i,)) where 1 is the dif-
ference hotween the first two components, and } is' the difference be-
tvean the last two,

Definitlon 2. The attacks on any single move are represented by a
three component vector called the attack vector, YV, with each compon-
ent being the number of times that a particular player was attacked on
that move. The complete list of attack vectors Is given in Table &4,

Lemma 1. Any distribution of points with a sum that Is divisible
by three can be represented by the sum of a sequence of attack vectors,

Definition 3. The sequence of attack vectors that constitute a

distribution of points is called ths decomposed distribution of points.

Nefinition i, |If all | attack vectors are removed from the de-
composed distribution of points, the residual attack vectors constitute

the deleted decomposed distribution of points.

Theorem 1. The | attack vector is the only vector which nainteins.
the disparity of relative strengths. Given any distribution of points
D*, with components (j,k,L), and a disparity of relative strenqths
vector of the form (m,n) where j - %X =m, ar! i - | = n then the appli-
cation of any arbitrary attack vector with the conponents fv.y.2) results
tn the distribution (j-x, k-y,L-z) and the DRS vector would be formed
by (j-x) (k-y)=j~x-k+yand (key) - (L-2) mk -~y ~ L+ 2, For
the DRS of th~ distribution to be maintained the foilowlng must be true,

]l jex-k+y=mmn=j-k

2 J-k -x+y=j -k

3 ~x+y=0

4 X =y
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5 and; k~-y-L+z=n=k-1L

5 k-L-y+z=k-L
7 ~y+2z=0
3 y=2

Fromh and 3, x = y = 2 is ¢t 2 only way the DRS Is malintained, the
only attack 'vector for which this is true is the | attack vector with
(i,1,1), all other :.ttack vectors have as components a 1, a 0, and a 2,
definitz!y not equa:

Leema 2. For a given distribution of points, D*, the corresponding
decomposed distribution of points and the corresponding deleted decom-
posed distribution of points are said to be equivalent with respect to
the disparity of relative strengths (DRS) of that distribution.

This follows from the definitions of the | attack vector and the
disparity of relative strengths, definitions 1b and theoren 1,

Nefinition 5. If two vectors are equivalent with respect to RS,
that Is, the DRS vectors for the two vectors have the same values in
the corresponding positions, the equivalence will be denoted \Ii = Vj.

Lerma 3. The ldentity rule:

! + V =V where YV is any attack vectcr. Th's result follows directly
from Theorem 1 and Nefinition 5.

Lema 4. ihe complementation rule:

V+ vu‘ = | where V is any attack vector. This result follows from
the definitions of attack vectors in Tahle 1,

Lemma 5. The combination rule:

oV 4+ Y = (n+1)V where n Is any positive integer and V is any attack

vector. This resuit follows from definition 5.




Lemma . The reduction rules:

J+KatLl laxl ey
-1 -1, -

J+ L =K J  +L =K

Kep=g KV etV =y,

These rules follow from the definitions of attack vectors in Table
1, from the laws of addition for vectors, and from Lemma 3.

Theorem 2. A deleted decomposed distribution of points has, at
most two distinct non-zero attack vector components.

Proof:

Let 7 and R be two distinct attack vectors such that T # R-', and
such that they are not reducible under Lemma 6, Consider a deleted
decomposed distribution of points, D, such that N = nT + mR.

Let us add an attack vector to D that is distinct from T, that is
not T°!, and that is not reducible in combination with T under Lerma %.
\le call this vector S.

If T is a member of the set J, K, L, then S must be a member of

‘I, L' ! in order to meet the above conditions.

the set J !, K
However, X must also be a member of the set (J"', Kn‘, L") in
order to meet the conditions that have been place?! on R,

Therefore, R and § must be reducible under Lemma A. Similarly if

e
'

T is a member of (J“', K", L;'), then both R and S must be menbers of

(J,K,L) and must be reducible under Lemma A. Thus the theorem is proved.
Definition 6. The positive integers associated with the two dis-

tinct vectars in a deleted decomposed distribution of points constitute

the components of a two compconent vector which is called the state vec-

tor S. If all players have the same number of points, S = (0,0), A
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pure state has a state vector in which at most one comoonent s non-
zcro. A mixed state has a state vector in which both components are
non-zero.

Jefinition 7. in each state the largest component is always listed
first.

Definition 2. Those two attack vectors which are in the deleted
decontosed distribution of points are those attack vectors which when
added to the vector D*, produce the nearest all-equal state. In other
words these attack vectors reduce the disparity of relative strengths to
D In the fewest number of steps.

Theorem 3. Fach deleted decomposed distribution of points has gt
as its largest component.

This follows from the definiton of the J-l

attack vector, defini-
tions la, tb, and 3, and from theorem 2. Since the distribution of
points D* has its components in a decreasing order of magnitude, the
attack vector which reduced the DRS to 7 in the fewest number of steps

Is the J !

or (9,1,2) attack vector.

Theoren &, The second component of the deleted decomposed dis-
tribution is a D, a Kor an L. It follows that if it is a pure state
the second component is A N, |If it is not O, then, from Lemma " and
Theorems 2 and 3, it must be in the set (K,L).

Theorem i, Each state can be transformed to a maximum of seven
different states. Given an arbitrary state (i,j) the reachahle states

are (i)j)) (i'])j): (i*'nj)) (i+]|j-‘)’ (i’j-'); (ilj".l)I and (i“yj*‘)-

This follows from the fact that there are seven attack vectors.




3%

Axiom 1. 0On any given move, the probability of a player attacking

P PR DO AT

either of his attack choices is independent of previous moves.

Axiorr 2. Two players with the same number of points are indiscrim-
inable to the third player, and thus each will be attacked with pro-
babiitity .50,

Definition 9. Let 7 be a strateqgy that identifies, for each triad
member, his more preferred attack choice (IPAC). The sole basis for
the choice of "PAC is the number of points asscciated with each player
so this identification holas only if both players are distinquishable.

Axiom 3. Each player attacks his /IPAC independently of the other
players' attacks and with probability P. Also each player attacks his
less preferred attack chace (LPAC) independently of the other playzrs'
attacks and with a probability of 1-p.

Axiom 3a. P is greater than l-p. (P Is greater than .59)

Leia 7. P is invariant over power position.

This follows directly from Axiom 3.

Lemma 7. P is Invariant over games.

This follows directly fron Axiom 1.

Axiom 4, P Is invariant over all distributions of nolnts.

Lemma 3. In the all-equal distribution the players are indistin-

quishable from nne another, and the probability of each player attackina

either of his choices is .59.

This follows directly from Axiom 2

i~ e

Theoren 7. For any strateqy 7, each player attacks his "I1PAC in-

dependently and with probability P on each move of the game.
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This follows directly from definition ? and axioms | and 3.

Theoren %. The theoren on rearranjeability:

Any distribution of points, D, can be rearransed so as to cbtain
an ordered distribution of points 0*. after each rmove, without affecting
any player's 'IPAC, or his probability of attackina the ‘tPAC.

By Axiom 1, each move is equivalent to an initial move, and by
definition % the choice of '\PAL depends only on the distribution of
points. Hence the "PAC wiil not be changed hy rearranqinng the dis-
tribution of points. From theorem 3, it is aoparent that if the “PAC
is not changed, the probability of attacking him will not be changed
and the thzorem is proved.

Axion 5. The probability of the occurrence of each attack vector
is the joint probability of the occurrence of the attacks represented
by the three comnonents of the vector.

Definition 1n. P(i) is the probability of attack vector i, where
the three components of the vector are (j,k,1).

Lerma 10. P(i) = PR(X) PR(Y) p (1)

\lhere PR(X) = P if player X attacks his IPAC
1 -P if player X attacks his LPAC

PR(Y) = P if player Y attacks his :IPAC
1-P if player Y attacks his LPAC
PR(Z) = P if nlayer 2 attacks his .iPAC

1 P if player 7 attacks his LPAaC
This follows from definitions 17 and 11, axiom 5, and theorems 3
and .

’

Axiom The probability of any transition from a state is the

sum of the probabilities of the attack vectors vhich produce that tran-
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sition.

Previous Test of the ‘todel

Hartman and Phillips (197¢) applied this model to a limited 32t
of data that consisted only of transitions from states that had a zero
as the second component (pure states). The results of the test were
inconclusive. The model fit the data only if the data points from the
first move of every game were excluded. It did not fit the first move
data alone, nor all of the data with the first rmove data included.

Hartman and Phiflips (197) proposed that the bad fit of the first
move data was due to the procedure used in the experiment. The crucial
point of the procedure was that the subjects were in a face to face
situation that allowed them to know which of the other players had
won the previous game. This qenerated the possibility that the subjects
were responding on the first ~ove to who had won the previous aame,
rather than on the distribution of noints for that name. It was to
eliminate the interference of previous gqames and to produce a larger
variety and number of data points that the present experiment was

desinned.

saad
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tethod

Subjects. Forty-three groups, each composed of three male under-
graduates were used in the experiment. The subjects were obtained
throunh a subject pool maintained by the fooperation/Conflict Research
Group at ‘lichigan State !''niversity. The subjects %ad been oricinally
recruited through a newspaner advertisement offering to pay subjects
for participating in notivational research. The pool had been collected
to provide a group of subjects who were highly motivated to particinate
in competitive name experiments. Since uelative conflict assunes a
desire on the part of the participants to achieve their goal (winning
in the truel), these subhjects appeared better suited for the experiment
than the usual subjects ohtained through introductory psycholoqy courses.

The subjects were called one week prior to the beaninning of the
experiment and asked to participate. If they consented to narticipate,
a time convenient for all parties (the three subjects and the experimenter)
was arranaed.

‘lhen the subjects were called they were told that the exnerinent
was a three person name in which they coul | win up to three dollars for
the one hour. “nly if they asked, were they tol1 that the minimun was
75¢. Nue to the importance of havinn evaryone appear at the aareed upon
time, the imnortance of fulfilling the oblination was stressed.,

Settin~ and materials: The expe~iment was conducted in a small
room with a rectanaular table in thc center. "n top of the table was
a wooden partition which divided the table into four sections.

Fiaure 2 is a diagram of the partition and table.

lﬂ"
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a a
Player on Player in Player on
left of the the middle rioht of the
experimenter experinenter

b / )

Fiqure 2. The Diagram of the Table Partitions: Top Yi 4.

The partition was constructed so that suhjects were able to see
the experinenter but not each other. The panels between the subjects
(1abeled “a in the diagram) were 3) inches high and "L inches wide,
The panel between the subjects and the experimenter (labeled 'h' in
the diaaram) was 10 inches high but varied in width for the three
different positions. The center position had a 20 inch openinn while
the two =nd positions had 5 inches each.

To standardize the exoerimental situation, it was necessary to
cgive each of the three suhjects a label, with the entire set of three
Jabels remaininn constant over all groups. In previous qgaming research
the labels A«P-f and YAF-7EJ-YOVW had been used for this purpose. To
find the least reactive label set, a pilot study was performed (MYartman,
1977). The most inportant result was that the label set ARGY'-"NRY -
KRYPTN' appeared to have essentially no response biases for suhjects.
ft was this set that was use? to represent the three players in all of
the games in the experiment.

To allow each player to indicate which other player he wished to
attack on each rove of the game, three cards were placed in every
cubical with one label of the set appearing on each card, Tach player
also had a wooden card holder on top of the panel separating hin from

the exnerimenter into which the experimenter inserted a card with the




k3

o i AWR m

label of that player. This card was in full view of the subject and
the experirmenter but out of sight of the other two subjects. This
allowed the experimenter to know the comnlete distribution of labels,
and each player to know only his own label.

An abacus like arrancement was used as a scoreboard. It was
mounted above and behind the exnerimenter in full view of all of the
subjects. The labels were listed in a vertical line on the left side
of the scoreboard with the points for each lahel listed to the riaht
of it. The points were represented by circular discs mounted on a
horizontal rod. The points taken away from each player were placed on
the richt side of the scoreboard and covered by a wooden shield. Thus,
only the points still poss:ssed by a player were visible, with all others
concealed behind the shield. Fiqure ? is a diagram of the shield and

the scoreboard.

* YO\ s N . N \ LN \ R \
SN AN NN WY

\ i -3
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Finure 3. The Dianran of the Scoreboard.
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Procedure: In order to produce a large number of data points,
eleven different initlal states were used, ten of which had a non-zero
second component (mixed states). All of the distributions and thelr
correspondinc state vectors and orders of presentation are listed in
Table 10. Because each state vector from (5,7) to (5,53) represented
different disnarities of relative strengths, ranging from 5 to 10, two
orders of presentation were constructed for the experiment. One order
increased the NRS over the six games played, i.e., the triad began
with the (5,0) state and ended with the (5,5). The other order presented
the games in a decreasing order of DRS, beginning with the (5,5) state

and ending with the (5,0).

Table 10. The Eleven Initial States and the Distribution for
the Two (Orders of Presentation.

Came | _Order | | 2 3 4 h 6
tHumber Arder 2 ) f b 3 2 1 4
State
Vector (5,0 (5,1) _(5,2) (5,3) (5.4) (5,5) __
0
t 1 15 15 17 10 n
s Type K
t 1 8] 13 15 17 10
r
i i 4 I i y y
b -
u
t } 14 16 19 20 22 2l
]
o Type L 9 3 " a 9 9
n
s 4 5 5 7 1 9

Each aroup of subjects recel '2d one of the four conditions appearing

in Table 10, with ten grouns in each condition. The four conditions were

kb A
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created by two types of Initia) statas and two orders of presentation.
These four conditions were numbered from one to four. In condlition
one, type K states were presented in order one. In condition two, type
K states were presented In order two. In the third condition, type L
states were presented in order pne, and in the fourth condition, type L
states were presented in order two. The conditions were presented in a
constant 1, 2, 3, h, order over the first 40 groups, f.e., the flr;t group
recelved condition one, the second condition two, the third condition
three and the fourth condition four, with this sequence repeated for the
remainder of the )0 groups‘.

Since the labels were listed in a vertical line on the scoreboard
there was a possibility of a response bias due to the label position
on the scorehoard. To eliminate this possibllity th. labels were
listed on the scoreboard in the three different sequences presented in
Table 1. For the ten groups In each condition the first label sequence
was presented four times, while the second and third sequences were
presented three times cach. This procedure counterbalanced any effect

due to label position on the scoreboard.

Table 11 Tho Thrae 5aguencas of Lzbels on the Seccreboard Used for
the Ten Groups in tach Condition,

SEQUENCE | SEQUENCE 2 SEOUIFSICE 3
ARGOY! BoRoY! KRYPTON
BOROY! KRYPTOI! ARGO"
KRYPTO!! ARGO!! RNRON

- . B O S - - - -

"Three groups had to bz roplaced thus the tctal of % nrouns man-
ticnod praviously, “orc will ba srid atout tha rrrlacemsnt of orouns in
the saction with the nrasentation of tha rasults,
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To eliminate possible individual biases of the subjects for a
particular lasel, each player was represented by each of the labels
once in each half of the experiment (once in the first three games and
once 4n the last three). !'ithin each qroup of subjects each label re-
presented each power position (the most points twice, the fewest twice,
ane the niadle number twice) once in the first half and once in the
second half of the six games played.

At the beginning of the experiment, the subjects were told that
they would play several games (an unspecified numher), and that one of
the e games would be chosen at random to determine payment. The winner
of that aame would receive the $3.79, the other two players each would
receive 7°¢. Further they were told that if the qame chosen had no
winner (a tie) then all three would receive 77¢.2

A cylind -ical urr, four inches high and two and one half inches
in diameter was used to obtain the random draw. The six garnes played
were represented by the numbers one through six pasted on six poker
chips. The subjects werz told that the six chips vere placed in the urn,
but the experimenter, out of sight of the subjects, put only those chips
into the urn which represented a game with a2 winner.

7o aive each player an equal opportunity to win the three dollars
every player was assirned each power position twice. These assignments
were distributed such that the sum of the disparity of relative strenaths
for the two assiunments o” each of the power positions for each of the

ZAlthOUgh they were told t :s resulted in 31l three receiving 75¢,
in fact it was not true. Since iany of the subjects krew other people
in the subject pool, it was fe' that one of che subjects must receive
the $3.27 in order to maintair e credibiiity of the rewzrd, and to
make recruitment of subsecguent subjects easier.
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players was 15.3 As an example, a player would be in the strongest
power position in the game with an initial state of (5,9) (ORS of &)
and in t 12 came with an initial state of (5,5) (PRS of 10}, thus a total
of 15 for the two games in which he was in the stronaest power position.
This means that the sum of the disparity of relative strenqths for the
two presentations of each power position was egual for all subjects.

After the subjects were seated at the table, the exnerimenter read
them the Instructions (presented in Appendix), and all questions re-
garding the playing of the game were then answered. Fach rame was beoun
by designating the distribution of noints for that aame and placina
these points on the left side of the scoreboard. The players were
then civen their labels for that ~ame and the subjects indicated the
player they wished to attack on the first move of the game. "n each
move of the game all nlayers indicated their choice by holding up
the card with the labe! of the chosen player. The cara was held so it
was below the top of the panel separating the subjects but above the
panel separating the subjects from the experirenter. This procedure
allowed for simultaneous, concealed attacks. The jame continued until
one player was eliminated (ran out of noints); the player with the most
points at this time was the winnar, but if no player had a plurality of
points the game was a tie.

then each group finished the six ganes, the winner of the three
dollars was determined 2y the experimenter shalina the urn and drawing

3The value of the DRS is taken as the simple index which is cal-
culated by addinag the two components in the state vector.
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out one of the chips. The number on the chip represented a qame, the
winner of which received the three dollars. The subjects were chen
questioned as to their knowledge of the laktels of the other players
during the games and also asked to verhalize their strategies in
playing the game. Finally the subjects were told the pirnose of the

experinent and thoroughly debriefed.
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Results

N the forty three qgroups recruited for the experiment only 49
were used in the data analysis. froup 13 was discarded because one of
the subjects had participated in a pilot study performed nine ronths
previously. This subject won the first three names played and three
out of the four games which had a winner. The other subjects felt he
had an advantage and therefore the $4.50 was divided equally between the
players. This qroup was replaced by group 41. The 22nd and 36th groups
had to be discarded due to an error made by the experimenter in (at
least) one of the games. (The second game in qroup 22 was started with
the wrona distribution of points and group 3% was presented with the
wrong sequence of labels.) Group 22 was replaced by group 42 and aroup
3G by group L5,

Althounh the major thrust of this section is to present the results
of the test of the fit of the mode! to the data, a Yarqs portion of the
section is devoted to an extensive examination znd analysis of the esti-
mated probability of attackina the stronger of each nlayer's two attac
choices. Ffstimates of P were obtained for the th.ee power positions in
every game played, resultina in 720 estimates (three power positions,
six games per group and 47 groups). The estimates were analyzed from two
different points of view. The first approach w . %o determine the effect
of the initial state, order of presentation. of state, and power
position on the estimated value of P. The se.u: ! analysic focused on the
possible effects of gam~ number, order of presec--: iocn, type of state,
and power position on the estimate of P. Decausc all distributions have

J! as a bhase, the different types of states are ieferred to as pure, ¥,




or L type states.

e ——— -

§ Results of the Analysis on the Fstimates of P'
E % Pefore the results of these analyses are presented, it is neces-
f - sary to explain some procedural difficuities in the determination of ar
estimate of P for each qame and power position. Although each game be-
gan as a definite state, it 4id not remain in that state throughout the
entire game. This would not be a problem if the type nf state remained
the same throughout the qame, for instance if the qgame benan as a nixed
K and remained a mixed K. However, several times throughout the exper-
inent the type of state switched from one type to another (either K to

L, or L to K). To solve this nroblem of nonhomogenous types of states

Gdtage Lad

within each group, the estimates of P were analyzed according to the

type of state from which the attacks originated rather than according to
the type of state the grcup began with. In other word:, attacks made
while a group was in a K type state would be analyzed within the " type
factor, even if the initial state had been a type L state.

The first qroup of estimates, classified as a funciton of initial
state, power position, type of state, and order of presentation (increasina
or decreasing) is oresented in Table 12. These are the comhined estimates
from all ten groups in each conditinn. The estin>tes indicate that there

'It was necessary to scparate the analysis of initial state from
the analysis of came number because the initial states were confounded
with qame number. This meant that =ach ga.> number was one of two initial
states and each initial state appeared in two different game numbers.

For exanple, the (5,0) initial state appearcd in the first and last qame
numbers and no others, while the first and last games represented only
initial states of (5,0) and (5,5). This confounding made it impossible
to analyze for ecither effact directly.




51°

[ Caspay T

739G U

— —— g o s o

[

By L O s N T ¥ T Lo
T ] W T T T T T T T TR T T TR (O T
¢ ”Cc. CN. AT VN NM. i = m ?w.u.v
¢ Go” of XS oo i (L) )
" v 7. 3 PRl ah € (2°)
N L Ly’ 96° i o i 4 (1°<)
§ o 25" ol AL ze 1 L b (0's)
T S AR AL |
B Y A A ¥ A Tk 7 i vl al M Ty U
< ql: rAV ve wo e 2 I : A#-MV p
t o b’ st o L v, 5 (e'c)
{ 5 U oo’ NC. W ...F.. ol b . ANﬁM
< Cu Ly” o 15" 1" 1o L + (1°S)
S S TS A a0 NS N 2

EEM U] EER Ju} ¢ 3 sdA)

43qwn,, oLet

FUE *93k3y O 9UA)‘U0131SOg J3MO4

e e e e e e AL
< N .. R
Uoilts g J3MO o Auc_w Paspd, 1 530y
43Gun, . _skey jeivy

UO13EIURSIIY JO J43pJ,
fdbqun,, Bury ‘93CIy |2I3IU) €Y 404 g 4O SIIEIIST  ‘C| dl¢el




52
are few differences between orders, or consistent trends over Inftial
states. The exceptions to this are the first and third power positions
for the type L states, wherna the decreasing order had consistently hioher
estimates than the Increasing order.

The estimates for both orders were then comhined, resulting in a
sinjle estimate for each Initial state, type of state, and power position.
The estimates are presented in numerical form in Table 13, and to make
for easler comparisons, In graphic form in Figures ! to 1. Tﬁe first two
fiqures compare the three power positions for ecach type of state (K or L)
as a function of initlal state. For state type L (Figure 5) there was
a consistent difference between the three power positions, with the second
oosition having the highest estimate, the third position the second high-
est, and the first position the lowest estimate of é. The same pattern
held for the type K states (Figure 4) with the exception of the (5,2)
state where the ordering of power positions was channed toa 3 >1 > 2,
The differences between the power positions for the type X states were
not as large as for the type L states, but they were consistently in

the same direction.

Table 137" The Combined Cstinates of ¥ Over Jdrders of ' chsentatnon for
facih Power Position of Cach Initial 3tatz and Type of State

Type of State X T “""“"::j
a Power Position Pow@*'Fletlon -
initial State T 2 3 [ - ]
(5,0) Y4 91 .87 3; rﬁ -2
(5,1) .66 .92 .27
(5,2) .32 .79 .87 h) “k 1
(5,3) .74 .85 A2 ] .50 .05 .oe
(5,4) .73 91 7| .3k .o .21

____(5,5) .72 ) 27 1 .37 o .30
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Flgure 4. The Estimates of P for the Three Power Positions
for Type K States as a Function of Initial State.
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The last three figures of this set (Figures 6 to 8) compare the
estimates for each power position of type K states to each pewér position
of type L states. The differences for power positions two and three
were quite small, with neither type having estimates consistently higher
than the other. The first power position for type X, however, had con-
sistently higher estimates than the corresponding power position for
type L states. In none of the comparisons in this set were there consis-
tent differences over initial states.

To determine if the differences displayed in the figures were
significant, an analysis of variance was performed on the 720 estimates
of P (three for each of the six games played by the 40 groups). The
data were analyzed for type of state, order of presentation, power posi-
tion, and initial state. This resulted ina 2 x 2 x 3 x © design with
repeated measures on the last factov and ten observations per cell. A
summary of the results of this analysis are shown i Table 4. The tabie
indicates there was a significant main effect for power position, as
Figures 4 and 5 indicated. Sigrificant main effects were also identified
for type of state, order of presentation, and (nitial state (labeled
DRS because each initial state had a different RS, rancing from 5 for
the (5,0} initial ztate vo 10 for the {5,535} initiai stote,. Significant
effacts were also identificd for the first order interaction of power
position with state type, and the first order inferaction of order of
presentation with initial stare (ORS}. All of these findings, with the
excention of the significant results for initial state, and the inter-

action of initial stare with order of presentation, were indicated pre-
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Figure 5. The Fstimates of P fro the First Power Position for Tach
Type of State as a Function of initial State.

1 . n Type of State
) - > K X e X %, o
X —rassmpewrrer: X — ~. O-"“'—:’ B .
\“0/"/ - L. x
) o}

Q=M wWw SV WD 20
t

=]

(5,9) (5,1) (5,2) (5,3) (5,4) (5,5)

Fiaure 7. The fstimates of P for the Second Power Position for Fach
Type of State as a Function of Initial State.
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Table 14. Analysis of Variance of the drder of Presentation, Type
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of State. Power Position, and Initial State ("2%)

- . e — e

. — —

Source df 1S F
Between Subjects
Power psotion (A) 2 N, b3 126,512
Type of State (N) 1 1.335 2&.5“°*
Nrder of Presentation (C) ] n,57n 7.7‘h**
A X R 2 1,724 22.112"
AYC 2 .13
PXYC 1 N.2%AR
AXBXC 2 n.nrn
Subjects within 5Sroups 10" n.n7s
Vithin Subjects
Initial State (NRS) 5 n,2ko 5,209*
AMD 19 n.101
B XD 5 0.NEL
¢ YD 5 Nk §.64a"
AlnXYXn 10 n.,37n
AXCXD In n.n75
RYCXD 9 n.n"°
AX2XC XN 1 n. nha
D X Subjects within 549 n, Nk
Groups
Total Trror 719 n.n91

xp < ,NNNG

dpo< M
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viously in the tables comparinc the estimates.

The estimates of Table 17 were then arranoced in terms of came nun-
ber (first game played, second played, etc.) for each type of state,
power position, and order of presentation. The estimates in the first,
third, and fifth columns {(those labeled increasinn) of Ta“le 12 are iden-
tical for the two dinensions of game number and initial state (PRS).

The estimates in the decreasing columns (the second, fourth, and sixth)

Bt et o

are reversed for the two dimensions, with initial state ("RS) increasing
Joing down the table while game nunmber decreases. This was caused by the
confounding of initial state with gamc number. This confoundina results
in the comparison of the last aame in the decreasing order with the first
garme in the increasina order.

The estimates of the two different orders of presentation for each
power position of the type K states presented as a function of initial

states were previously presented in Table 12. The two orders of ore-

sentation can be compared as a function of game number using the same

table by comparing the estinates for the (5,7) scate of order one (in-
Y

creasing) with the (5,5) state of the decreasing or number two order of

YR

nresentation, and then comparing the (5,1) state of order one with the
(5,4) state of order two, continuing until the final comparison is nade
hetween the (5,5) state of order one and the (5,3) state of order two.

The comparisons indicated that there were no consistent differences be-

g Sy

tween orders, nor a consistent tven” cser game number for any pover

pad

position.
ne same comparison procedure that was used for the K type states

was also used for the I type. As onposed to the K type states the L

i i e
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type states indicated consistent differences between the two orders. in
power position one the decreasin~ order had consistently higher estinates
of P than did the increasino order In power position two the decreasing
order had higher estimates in four of the six gam2s, and in the third
power position the decreasing order "ad hijher estimates in five of the
six games played. Again no consistent differences were indicated across
game numbers.

The two orders of presentation (increasinc and decreasing) were
anain combined producing 1% estimates of P (one for each power position,
game number, for each type of state). These combined estimates are
presented in Table 15. Because the graphs of these estimates did not
differ from the qraphs of the astimates when presented 2s a function
of initial state, they are not oresented here (see Fiqures " to 3).

Figures 4 and & compared the three power positions for each type
of state as a function of initial state, however, they also illustrate
the relationship between the power positions for each tyne of state as
a function of name number. The three power position for type K are
presented in Figure " and the three for type L in Fiaure 5. Tahle 15

"

indicates that in the type 'l states, the same 2>3>l orderin~ held for
all but the third and sixth games. In the third game the orderina was
changed to 3>152, and in the sixth fgame to 35251, It will be noticed,
however, that the reversed estimates in hoth cases differed by less than
.06. In general the 2>3>1 orderina of vower positions held for the tyne

K states. MAcross names there was a consistent trend for all estimates

to Increase as game number increased.
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Table 15. The Combined Estinates of P Over Orders of Presentation
for Each Powsr Position of Tach Tamz “unkar and Tyon of

Stat.

[ Type of State K L ]
Power Position __Fower Position

Rarme ilunber 1 2 3 1 ? T
T .50 .50 0 .27 oy A7
2 .65 .99 70 . 7 2
3 .13 30 ) 37 "2 G
4 .72 .35 .73 .55 e .07
5 LTh .93 b L .82 .79

s K3 .37 .00 40 .97 .02 ]

Figure 5 presented the differences hetween the estimates for the
three power positions for state type L as a function of init ~1 state
but it also illustrates the differences found betwecn these stimates
as a function of game number. These differences are indicated in
Table 15. 'ere again the same 2 > 3> 1 ordering of power positions was
found for all games but with no points of reversal as were found for the
type X states. As was found for the type { states, there was a slinht
trend for the estimates to increase over game numbers for all power
positions.

Table 15 presents the estimates of each power position for the
type K states and the corresponding estimates for the tyne L states,

as a function of game numher. s for the initial state analysis (see

Finures & to 3), power position one showed the only consistent differences

between the two types, with the estimates for the other two nower posi-
tions varying little from each other. The estimates of the first power
position for type K were consistentiy larger than the corresponding

estimates for type L. The differences between the two types ranaes from

02 to b,
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To determine the sianificance of these trends an analysis of
variance was performed on the factors of order of presentation, state
type, power position, and gcame numher. This analysis resulted in a
2 x2 x 3 x 6 design with repeated measures on the last factor and ten
observations per ceil. The results of the analysis are presented in
Table 15, Sicnificant main effects were found for 3ll four factors. The
factors of power position, state type, and rame number were all siaonifi-
cant beyond the .0105 level. The main effect for order was siagnificaht
beyond the .91 level. ne first order interaction was indicated with
power position interacting with state type at the .715 level of signifi-
cance.

As was mentioned nreviously, there seemed to be a consistent in-
crease in the estimates of P over game number, with the largest differ-
ences coming between the first three games. To test the possibility
that all of the differences were located in the first two games, the
same analysis of variance was performed on the last four games separately.
The desion was thus reduced to a 2 x 2 x 3 x L, with repeated measures
on the last factor and ten observations per cell. A summary of the
results of this aralysis appears in Table 17. This analysis indicated
a significant main effect for powar position, state type, and order of
nresentation. The main effects for nower position, and type of state
were significant beyond the .9105 level, while the main effect for order
was significant beyond the .01 level. A significant first order inter-
action was also indicated for the interaction of power position with
type of state, which had a probahility of less than .IM05. ''o main ef-

fect nor interaction effects with game number were indicated. This in-

a4
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¢ Table 16. Analysis of Variance for Irder of Presentation, Type of
: State, Power Position, and fane “'urber for All fiames

Source +€ 1S F

Betweer Subjects

Povier Position (A) 2 ST 196 612"
Type of State (1) ! 1.735 2k Goo®
Order of Presentation (C) 1 n.579 7.7<h**
A X R 2 1.72% 2. N
AXC 2 N1
B Y C ! 7. 26¢
AY Y 2 2.060
Subjects within firoups 197 n.075

Hithin Suhjects

fiame "umber (9) 5 n.4nl 12,4467
A XD 19 n.nh"
2XD 5 n.n"n
CxXn 5 1.°57
A3 XN 19 n.9M1
AYXCXDN 1 n. N0
nXCXND K 1.175
AXBYXCXD 11 0.97"°
D X Subjects within 540 N0k
Lroups
Total Error 719 0.091
< .7005
%%k
p < .7

¢ Mamatie s st

1 et E bt x s Al bt Sne d A
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Table 17. Analysis of Variance for Zrder of Presentation, Tyoe of
State, Power Position, and hame "umber for Last Four Games

Source daf MS "
Detween Subjects 2
Power Position (A) 2 5.472 a7, 000
Type of State (3) | n.521 14, 545"
Order of Presentation (C) 1 0. 4"4 7.871**
A XD 2 1.902 1a,700"
AXCL 2 n.037
3xX¢C 1 D11
AR nYC 2 n.15n
Subjects within Groups 17 .050

Hithin Subjects

fiame “‘umber (D) 2 n.N24
AXD s n.0h"
XD 3 0.173
cn 3 1.971
AXDP XD ¢ 0.0tk
AXCXD G "7
BYXCXD 3 n.105
AvYnniXeun ‘ N.111
" Y Subjects vithin 34 0,941
firoups
: Total Frror W7 n,075
| o oo
*p < N4
E Fay o<,
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dicates that most of the variance was due to the first two names vlayed.

YIRS P i o

This interpretation is further emphasized by the relative size of the
error terns of the six and four game analysis. The error term for the
last four games is almost one half as large as the error tzrm for all of
the games. Thus one third of the data produced almost one half of the
error variance,

To test this interpretation a multiple comparison test was performed
on the estimates cf P for the six game numbters. The test was desiqned
by Scheffe' (1955) and described in Fuwards® (1770). The results of

this test, presented in Table 1%, partially support the hypothesis that

Table 13. The t' Values of the HMultiple Comparisons of the Fstimates
of P for the Six "~une !umiars.

O R
" Estimate Game
of P 'umber ] 2 3 4 5 g
.597 ] - 3.79%  5.90%% A 7%k 10%k 5 (2%
.704 2 - o 2.12 2.65 2.23 1.93
L5k 3 - - " .21 .23
769 b - - - L7 1,16
I 5 - - - - R'T)
156 3 - - - e ——-
‘iean Sauare w'thin Subjects = .02°3 *p < 05
**p < 001

all of the variance was comi.a from the first tuo names.

As the table

indicates, the difference between the first two qames was sianificant

beyond the .05 level while all other differences between the first game

and the last four were sigrificant beyond the 001 level,

The second




6

qame had no siqgnificant differences wizh any of the last four games.

g IV THETVERAMATY

These tests indicated that the differences were nenerated by the first
name, with little of the variance coning from the remainina games. Al-
though the tests indicated that the second game was not sianificantly
different from the last four games, its lower estimate of P and its
significant differences with the first game at only the .N% level cast
doubt on the assumption that it was not played differently from the last
four games.

To test the hypothesis that the subjects had no response biases for
the labels used in the experiment, the number of attacks made on each
label was counted. fy counting only attacks in which the attacker had
a choice between two players of equal power (points), and therefore in-
discriminable except for their labels, a who to whom matrix of attacks
was constructed (Table 19). These data were not completely independent
since each player could contribute more than one attack for each label.
Because only a few subjects contributed more than one attack for each
fabel, the non-independence of these few data points, out of a total of
301, would have 3 nenlinible effect on a chi square goodness of fit test.
Thereforr:, the test was performed on the data, with the assumption that
the probability of any label attacking either of his choices was .50,
The chi square for the entire table was 2.52 with three deqrces of freedom.
The observed, expected, and chi square values are presented in Tables 17

to 21 respectively. The fact that the chi square was less than the dearees

of freedom indicates that no response biases were nresent in the data set.
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Table 19. The Observed Attacks lade hy Fach Label on Tach of Its
Choices
B Argon Soron Xrypton <un
Argon - 155 11 270
Boron 13C ~-- 127 263 ]
Xrypton 77 139 I~ T :L___- o3 |
Table 2N, The FExpected Values for the !'unber of Attacks on Fach

Label's Choices, Assuming "andom Pehavior

Argon | Poron Lrypton Sum

Argon s 1h3.0 LA
“oron 131.5 111.R 263 _

{“rypton 17" 5 125.5 == 25

Table 21. The Chi-Squares for Each Lahal's Two Attacl Choices
| " Arqon Roron [ TWrypton ,  Sun |

Araqon o 1.017 1.7 2.01h

_Joron .15% -~ N . 3D

[Krypton Ay SO0 Ve N 12

-

Sum for whole table is 7.5 with 3 Jdegrees of freedom
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Test of the Model

Although many data points were generated within the experiment,
several cells in the following analyses had expected values of less
than one and sevriyal more had expected values less than five. These low
values were caused by very low predicted probabilities for these cells.
Tiiese cells violated the condition for the chi-square qgoodness of fit ;
test, that no cell have an expected value less than one and only 23% of
the cells be less than five (Hays, 1973). To guard against acceptinn
the model by using spurious data, due to the few cells with values less
than one, the data were collapsed over particular types of states. ‘hich
states were collapsed together tas determined hy the number of translt¢ions
possible from the state. For each of tha following tests, all pure states,
excluding the (0,0) and {1,0) states, were collapsed to form one transi-
tion state, the mixed states with equal components ({1,1) to (5,5)) were
collapsed, those differing by one ((2,1) to (%,4)) were collapsed, and
those differing by rore than one ((3,1) to (5,3)) were also collapsed. !
Each of these three types of mived states, and each of the three types
of pure states is characterized by a particular numbar of transitions
which are possible from it. The (1,0) state has two possible transitions,
the (1,0) state has four possible, and all other pure states have five
possible transitions. The three types of mixed states are characterized
by four possiole ransitions tor the equal componer.t state, six possible

for the state whose components differ by one, and seven possible for the

states having components differing by more than one.

PR SV SR

The chi-square coodness of fit to<t was then applied to these col-

lapsed t unsition states, none of which had a cell with an expected value
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less than one. This was done for all of the tests that are presented in
this section. The results of the analysis on the collapsed data were
not different from the full analysis. Due to the similarity of the re-
sults and the fact that the full table provides a more detailed picture
of the results, only the results for the complete table and its chi-
square are presented. By presentinn the entire table rather than the
collapsed data, it is possible to determine more precisely the cells in
which the model does not fit.

Despite the invalidity of many of the assumptions of the rmudel,
the test of the model was performed. The data were analyzed in the
general table discussed previously. Because so few data points occurred

-
beyond the (5,5) state only transitions between (0,9) and (5,5) were
used in any of the following analyses. The estimate of I was obtained
by dividing the frequency of attacks on the stronger by the totai number
of attacks.

The frequency of a!l of the transitions in the data set are pre-
sented in Table 22, the expected values in Table 23, and the chi-squares
in Table 2h. The estimate of P for the entire data set was .77. The
chi~square for the entire tchle was 524.2% with 99 denrees of freedom.
The degrees of freedom were produced by 111 cells, 21 rows with marginal
constraints, and one estimated parameter. “ecasuse the model did not {-t,
the data were broken down in several ways in an atterpt to find a set of
data that the model did fit.-

As the a..alysis of the estimate of P consistently indicated, there

were differences between the three nower positions, between the types of

states and between the first two games and the last four. These differences
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directed a series of changes in the model, beginning with a change from
cne parameter to three parameters, progressing to splitting the data by
type of state, and endino with only the data from the !.st four games.

The results of these tests are presented in Table 25. For each disection
of the data, the chi square goodness of {it, and correlation coefficient
were calculated. The chi-squares, their degrees of freedom, the correla-
tion coefficient, and the estimates of P used in calculating the predicted
probability of each attack vector and thus each transition, are presented

in Table 25.

Table 25. The Surmary Resuits of the Four Tests of the ‘lodel

L_ Data Set | 2 3 Chi-square df r Ratio __
A1l Data g7 .77 .11 s2h.26 ® - 5,7
?K States M .50 03 127.57 57 .1 2,27
L states 2 .9 .31 257.72 % . 2.9, |

'K Types withcut
Pure states o .06 .82 157.05 U ) 2.3

iL Types without

Pure States .36 .90 .79 13h.47 £ oh 2,85 |
t |
Pure States .55 9l .35 R2.75 17 .93 2.19

!K Last Games
|

7 g .8 134.57 &Y .an 2,05
]L Last Games 40 L93 .02 137,73 6% .85 2.7 :
Pure last fames .03 .23 .87 31.57 17 .93 1.8% J
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The introductior of a three parameter model produced some problens
for the transitio: equations. 1-e transition table hac sraviousiy been
sinplified by the fact that the equations for the crucial X and L vec-
tors were the same as were the equations for the crucial K-' and L_’
vectors. s was mentioned earlier, these are crucial vectors because
they produce differential transitions depending on the type of state
of the triad. Because rearrangzahility causes J;‘ to be the basis of
all states, the J, J—‘, and | vectors produce the same transitions re-
gardless of the type of state they are applied to. ‘hen three para-
meters are introduced, the equations for the crucial vectors are no
longer tne same. 3ecause the equations for the vectors are not the
same, the equations for the transitions produced by these vectors are

not the same. The new equations for the attack vectors are presented

in Table 26, and the new equations for the transitions are presented in

Table 27.
Table 26. The Equations for the ..ttuck Vectors for the Three Parameter
"lodel
o atteck Mectors ] Cquacions
| P+ 0 - QP =-MM
J 1520
J! (1-2) (1 ) (1-R)
X ~(1-P) (1-0)
k! P0(1-R)
L p(1-0) (1 R)
! 0 () -9) )
P = probability of strongest player attac\ing his 'iPAC
Q = probabflity of hiddle player attacking his IPAC
R = probability of wealiest player attackinn his "IPAC
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The estimates of the three parameters for each of the separations
are listed in Table 25. These estimates show no consistent trend over
the various splits of the data. After the estinates were made for each
power position separately in the first disection of the data (rows 2
and 2 of Table 25), the astimates remained fzirly constant for each
tyne of statc., The only consistent differences bctween the estimates

for the various disections of the data were the higher estimates for

all power positions for cach state for the last tour games than the same

estimates but for the entire data set.

The data were first split by separating all transitions from mixed
L states from transitions from mixed K states. The pure states were
divided on the basis of the type of state the remainder of the initial
states were for that group. For exampie, a transition tron a pure
state would bLe placed in the ¥ data group if the initial states of the
remaining games were K, or in a L data group if the remainina qames
were v 's.

As Table 25 shows, the rodel anain failed the test of havinn a
chi-square less than the deorees of {reedom, with the type L data dif-

arina considerably riore from the rmdel than th~ type % data. The chi-
square for the type X was 197.07 and for the type L 257.72. both with
37 degrees of freedon.

The second splitting of the data, rows %, 5, and ”., was done hy
type of state (pure, mixed X or mixed L}. Again the model did not fit,
with a chi~square of 52.75 with 17 rleqrees of freedom for the pure
states, a chi-square of 157.95 for the mixed K and 104,47 for the nixed

L, both with 6" degrees of freedom.

[N CHITE e,
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The data were finally reduced to only transitions which occurred
in the last four games playad by each aroup (rows 7, 7, and ?). The
data were left in the three state form and all transitions which occurred
in the first two games were reroved. The chi-square for the pure states
was 31.57 with 17 degrzes of freedom, for the mixed % it was 137,52
and for the nixed L 130,73, the later two had " dearces of freedon.

The results presented in Table 25 are listed in a decreasing ordr¢
of generality. As the data were split, and made less general, *he
chi-squares were reduced, however, as the chi-squares were decreased so
were the corresponding degrees of freedom. These nonconstant denrees
of freedom made: the interpretation of the decreases in the chi squares
difficult to make. To solve this difficulty the ratio of the chi-
square to its deqgrees of freedom was calculated for each test of the
model. These ratios are presented in the last column of Table 5. In
neneral these ratios decreased ac the data were split and made less
general. The only disection of the data that produced no reduction in
the ratios was the separation of the pure states from the mixed K and
mixed L states (rows 4, 5, and %). These decreasas indicatz that the
fit of the model s imporved with continued separation of the data, hut
the fit does not improve enough to allow acceptance of the model.

in ali of the tests of the model the chi-squares were larger than

their denrees of freedom, After the initial splitting of the data the

transitions from each state became so meager that any test »f the
mode! would be meunincless, For this reason the search for a fit of the

model to the Jata was abandoned.
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Discussion

The extensive analysis of the estimates of P revealed that many
of the assumptions of the model were invalid, The invariance of P
over power positions, state type, initial state, and order of presenta-
tion were all called into guastion.

The main effect for power position was found in all of the analyses
performed. The significant effect for power position shown in the
analyses of variance and illustrated in Figures  and 5 indicated a
2 >3>1 ordering of the estimates of P for the three power positions.

The relatively low estimates for the first power position was due
to the fact that =ach of the two weakor power posicions could take away
one point, and tharefore were equally thraatening to the strongest
player. The weakest player had » slightly lower estimate of P than did
the niddle player. Although it was to the weakest player's advantage
to attack the strongest play=r, both of the other two players were
stronger than he and, therefore threatening to him. The threat of the
suv-ongest player, nowever, was considerably greater than thai of the
second stronqest and therefore tihe weakest player attacked hin rore
often than re did the second strorges’.. The s¢cond power pnsition haa
the htguest estimate of P ir almost 2il of the names played. This hinh
estimate was caused by the fact that the stronnest player was by far
the nreates. threat to the second strongest player. As the estimates
show, the seccond power position attacked the <t:ungest player in over
30% of the atracks made.

One o the rost interestinag results of the experirient wa< the im-

plication that at least the firs: game and possibly the first tvio games
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were played differently from the remaining games. The Scheffe' multiple
comparison test showed that the difference between the first game and
the last four were significant at the .001 level and the difference
between the first and second game was significant at the .95 level,
Although the second game did not differ significantly from the last
four games, the t' values of the Scheffe' te't for those differences
were all much larger than the t' values for the differences between
any of the last four games. These t' values suggest that the last four
games were played differently from the first two.

The error variance that is produced by the f:rst two games is ap-
proximately one half as large as the error variance for the entire data
set, and the large differcnces between the firct two games and the last
four indicate that this effect was very likely due to a learning effect
that was concentrated in the first two games. The small ¢' values for
the differences between the last four games indicate that the estimate
of [ stubiljz.d o”ter the sacornd game. This stabllization Indicates that
any effect due to learning was eliminated after the seconi game.

The main effect for initial state is diffjcult (o locate. ’‘one of
the figures indicated any consistent trends over initial state for any
of the power positions. Because there was a sitnificant effect for
game number, and game number was confounded with initial state, it is
possible that the significant effect for initial state was an artifact
of game number, The confounding of initial state with game number
caused the (5,0) (5,1}, (5,4), ard (5,5) initial states to have lower
t<timates of P than che (5,2) and (5,3) states, It was the former set

of initia! states that occurred in the first ard second game numbars for
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the two orders of presentation, and for this reason had lower estimates

N e ey

of P than did those states which occurred in the third and fourth games
only {(5,2) and (5,3)).

The two orders of presentation were originally inserted into the
design to counter any effects due o game number., The assumption had
been that the effect of game :-mber would be linear, thus a lower esti-
mate of P for an initial state in an earlier game would be countered by
a higher estimate when that initial state appeared in a later game. The
fact that the effect of gamz number was not iinear after the second
game caused the two orders of presentation to be ineffectual. Becauze
the first two games, and thus the four initial states mentioned previously,
had lower estimates of P in one order of presentation and because the es-
timates of P asymptote at the third game and thus change little after
that, the inltial low estimate f“or the four initial states cannot be com-
pensated for by placing them in a later game., The elimination of the
significant effect for gaine number by the removal of the first two
games, and the significant differences between the first game and the
remaining five, iend support to this interpretation.

The interacti ‘“etween initial state and order of presentation
was significant at the ,0005 level. This effect would also seem to be
caused by tae significant effect of game n.nber. In the increasing
order the (5.0) and (5,1) states were in the first two game positions,
thus both had .ow estimates of P, however in the decreasing order of
presentation these same states were in the fifth and sixth game numbers
and there/ore had high estimates of P. The states (5,5) and (5,4) were
in the same situation except they appeared in the ea/lier games in the

decreasing order and in the later positions In the inrreasing order.
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Thus different orders of presentation produced different estimates of
P fur different inftial states. Some initial states increased their
astimates from one order to another, while others decreased their
estimates making the same transition, and still others maintained their
estimates for both orders of presentation. From the results of the
analyses performed it seems that it is this ! ind of pr .ess that caused
the. significant order by initial state interaction.

In general the order of presentation was significant at the .01
level. !0 interpretation of this result is possible since there seemed
to be no consistent differences between the orders. ‘lore substantial
evidence is needed before any meaninaful explanation can be given.

The significant interaction foi type of state with power position
is apparently due to the difference between the two first power positions.
The estimate of P for the first power position for state type L was much
lower than its counterpart for the K type states, The estimate of P
for this power position for the type L states is nuch lowar than the
estimates of P for either of the other two power positions for eilther
st¢ate type. As cpposed to the first power positions' estimates there
seemed to be iittle difference between the estimates of P for the two
lower power positions (see Fiqures 4 and 3).

The sianificant main effect for state type is clouded by Its highly
significant interaction with power position. The larae difference
between the first power position of state type K and the same position
for state type L could cause the main effuct for state type. The ex-

tremely low estimate of P (.49) for the first power position of state

type L drives dovn the estimate of P for the entlre state type. Since
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this reduction did not occur in the type K states, the first power
position could very well have caused the significant effect.

These analyses of the significant offects for state ty e illustraze
a tundamental difference between the type of play in the two states.
In the type K states the estimate of P indicates a predominant tendency
for all piayers to employ the fair play strateqy. The type L states,
however, differ from the type K states with respect to the action of
the first power position. Th'i - power position seemed to fluctuate he-
tween the fair play or the dyadic competition strategies and the threat
minimization strategy, with the latter slightly favored over the former.
The reason for this difference between states is obvious when one looks
at the power structure of each state type. As pointed out previously,
the type L state is characterized by a power structure of one stronqger
and two weaker players, and the power structure for the type X states
is characterized by two stronger players and one weaker player, In type
L states the two weaker players are equally threatening to the strongest
player and therefore the strongest player predominantly employs the
threat minimization strateqy. The K type distributicns, however, hav~
two stronger players, each of whom (s the greatest threat to the other.
Maither of the two stronger players can afford to attack the weakest for
an indefinite number of moves since the weakest player will attack hin
in retaliation. This internal constraint anainst attacking the weakest
in the K type states produces different transitions and estimates of P
fron those produced by the type L distributions.

The power structure (distribution) of the two types of states

seemed to produce different types of strategies for the flrst power
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position, with the type K states tending to produce the fair play
strategy and the type L the threat minimizaticn strateqy. The two
strateqies are indiscriminable for the two lower positions because they
result in the same attacks. This irndicates that two p-ocesses are
involved in the truel, one for each type of state. Ignorina these dif-
ferences between the types of states the simple .i16de] was tested on
the entire data set.

The test of the model showed that there was no sinq.e process
occurring in the truel. Therefore, the simple model proposed 1id not,
in any way, capture the interpersonal process within the truel nor did
it mirror behavior in pure conflict situations. Contrary to exnecta-
tion, the participants did not blindly attack the stronger of their
attack choices.

Based on the results of the analyses on the estimates of P the
data were segreqgated in various ways and the mode! was chanqed from one
having one parameter to one having three, U[stimiytes were made for the
three parameters, and transition equations generated for each of the
state types. These separations of the data generally resulted in a re-
duction of the chi-squares, but the reduction was not substantial
enough in any of .he cases to permit acceptance of the model. These
negative results indicated that even within types of states there was
no simple, single process operating,

if the piayers had used the strateqies tha analyses of the state
types indicated, then the fair nlay rmodel should have at least fit the
K type states where this type of strateqy was tne most prevalent. As

the analyses of the modei indicated, even the data from the K type of
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states were not reproducible by the model. In aeneral, the results of
the tests of the rodel indicated that at least one type of process was
operating within each of the three types of states J=fined (nure, mixed
K, and nixed L). These processes were not being caotured by the fair
play model nor its three parameter variate. All attemnts to select
particular types of states whichh produced correspondence hetween the
model and the data proved fruitless. Although there was a tendency
for higher levels of 1S to oroduce larger chi-squares, it did not held
consistently enough to produce any change in the fit of the model when
those states were excluded from the analyses,

Since neither the proposed model nor its post hoc variation fit
the data, an additional examination of the results through a visual
representation of the subjects resoonse was performed. A neometric
representation of the state component system was previously developed
by Phillips, ilartnan, and Klein (1777). f%ecause all state vsctors
can be represented by a pair of numbers tt is possible to represent the
staote component system in a two dimensional coordinate system. Such
3 representation is presented in Figure 9.

Figure 9 shows some arbitrary state, (i,j), and the six possible
transitions from that state. fach of these chanijes corresponds to one
aiven attack vector. For example the change vron (i,j) to (i-1,j) is
along the axis lahcled J and corresponds to a J attack vector. A tran-
sition in the opposite direction, toward a {i + 1, j) state, is along

the J axis but toward the g !

end. This transition is caused by the
J l attack vector. Similarly rovenents aiong the other axes ar- caused
by the corresponding attack vectors. The seventh attack vector, !, re-

sults in no transition from any state vector,
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Figure 9. Representation of the State Component Systen.
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All possible state vectors can be represented in this coordinate
system. The state (0,7) falls at the origin of this system and any
attack vector moves the system in one of the six possible directions.
Because it has been stipulated that the distribution of points be
listed in & decreasing order of magnitude, only a limited area of this
coordinate system is needed. ‘lith each state having J"' as a base, ;
only a 40 degree wadge of the entire coordinate system is needed to ;
represent the state component system. Thus, all possible states
cor-espond to points within the region bounded by the dashed lines in
Figure 10, Those states falling directly on the J axis are pure states,
those falling above this axis are mixed K, and those falling below It
are mixed L.
Since the boundaries represent states ° the form (iJ-', 1K) or
(iJ‘l,iL) only moves which result in states of the form (i+l,i),(i,i-1),
(i+1,i-1), or (i,i) are possible. This is due to the fact that only
these transition states maintain the decreasing order in the distri-
bution of points. As was piroven in the develorment of the model, only
states which have the J-I component larger than the second component are
listed in a decreasing order of points. lovenents beyond these boundaries
result in states of the forw (i-1,i), (i,i+1), ~r (i-},i+l) and therefore
violate the restriction that the poincs bz tisted in a decreasinn order
of magnitude, and, thus, these houndaries are impermeable, ]
The impermeablilitv of the boundaries results in a reduced number
of possible transitions from those states that lie on or near to thenm.
Those states whichk tie on the bourdaries have only four possible transi-

tions. For exampic the point below the J axis labeled (3,3) has only
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three other reachable states (besides remaininn at that state): (4,3),
(,2), and (3,7). Since all attack vectors are still possible, it is

necessary to introduce the term directional vector to deal with the

collapsing of attack vectors into one transition, The transition from
(3,3) to (3,2) is 'n a direction parallel to the L axis and in the Lt
direction alonc that axis. Thus, this transition will be referred to

as an L™" or an L7} directional vector. 7ihis dirzctional vector would

! or J attack vector occurred. This can be verified

occur whenever an L~
by noting that the lower (3,3) state represents a 3J"', 3L state. Thus,
an LV ateack vector chanced the (3,3) state to a 3J- , 2L state, while
the J attack vector changes the (3,3) state to a 2J°‘, 3L state. Py
virtue of iearrangeabiiity, those two states are equivalently (3,2).

Those states which fall adjacent and parallel to the boundaries
also have restricte: trarsition ranges. The (i-1,j+1) transition
vioiates the restriction that the nolnts be i1n a descending order of
magnitude since the second component is larger than the fivst, This
follows from the fact that uil states on this line are of the form (i,i-l)
and a transition of the form (i-1,j+1) would result in states of the
form (i-1,i) in which the first component is smaller than the second.
‘then this state is rearranged a transition of the forn (i,i-1) is pro-
duced, the same transition that is produced by the | attack vector.

The (1.7) and (7,7) states also have restricted transition ranges.

The {1,0) s.ste has five possible transitions with the (1,-1) and (2,-1)
transition states being undefined. The (9,7) state has two possible
transitions, the {1,0) state and the (0,7) state: all other transition

states are undefined.

F
b
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in each of the states presented abuve, the type of directional
vector is G.termined by the axis to which the vector is parallel. Fcr
those staies witich have no restrictions on the transition range, the
directional vectors are isomorphic to the attack vectors and, therefore,
take on the labe) of che attack vector that » oduced the transition. The
attack vectors correspond to the thrce axes, and the sign of their ex-
ponents corresponds to direction.

For the entire data set, a mean directional vector from each state
was calculated by the following method. A resultant directicnal vector
was calculated for each of the axes intersecting a state. This vector
was represented by the lower case letter corresponding to its axis
(j,k, or ). The vectors were computeu by subtracting the protability
of the inverse directional vector from the probability of tfe directional
vector. As an example the resultant directional vector for the J axis
was the probability of the J directiona'’ vector minus the probability
of the J™! directional vector. Each directional vector was calculated
by adding the probabilities of all tho'e attack vectors which contri-
buted to it. The directional vectors and those attack vectors which
contribute to their formation are presented in Table 23. Following are

the equations for the resultant directional vectors.
1,

jed -
k=K -
pat -

From the three resultaent directional vectors a mean directional
vector was calculated for each state. 3y using the parallelogram law,
two zcovdinates w~ere determined from the three resultant directional

vectors. The x coordinate lies or a line which is parallel to the

Al
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J axis and intercepts the state from wnich the mean directional vector

was being calcuiated. Type y coordinate lies on the line that is
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orthogonal to the x axis and intercepts that state.

x = j - (€C0S. 60 degrees) (k + )
J q

T

y = {C0S. 30 degrees) (k - 2}

The j resultant directional vector contributes nothing to the y
coordinate because it is orthogcnal to the line on which y lies, while
the k and £ resultant vectors contribute to psth coordinates. These
two coordinates describe tha mean directiona! vector for each state
for which they were calculated. The mecn directiona! vectors ware
calculated for all of the states presented in the wedge in Figure 10
and are presented in Figure 11,

This visual representation shows the diverse processes that are
operating when people engage in 3 truel. The strategies mentioned
previously can be identified by directlonal vectors, The fair play
strategy would be represented by the J directional vector, These
vectors are represented by dashed iines from each state, thus showing
how closely each state's mean directionai vector corresponds tc each
type of strategy. As the figqure shows, the fair play stratcgy was
employed at the boundries while the threat minimization strategy was
employed In the Inner regions of the v.edge. An excepticn to this was
the slight preference for the former strategy in the lower pure states.
At the extreme states, the threat minimization strategy was employed
more frequently than the fair play sirategy, while this tendency re-

versesn for those less extreme states.
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These analyses indicate that at least two processes are involved
in the piaying of the truel. The fact that the processes were not
separated along state type lines, but rather by proximity to houndaries
and extreme states, illustrates why separation of the data by state
type did not produce an acceptable fit of the model.

An interesting point atout the results was the fact that all in-
itial states of type L . «i ~ne three lower initial s*ates of type K have
threat minimization as t» . edominant strategy, whereas the initial
statss of (SJ",BK), (5J~‘, €), and (517),5K) have the fair play strategy
as the most predominant. The boundary of the K type states has two
stronger players of equ.l strenath and therefore the fair play strategy
is that nmovement which is paralle’ to the X axis but in the K-' dir-
ection. Uhether the threat minimization strategy was employed at the
extreme states because they were initial states or because they repre-
sent some kind of threshold for the strongest player is impossible to
determine from the data.

The threat minimization strategy and the falr play strateny have
particular consequences for the distribution of points. The first
strategy results in the increasing of the difference between the two
weaker players and a decreasing of the differance between the two stronqer
players. This indicates a movement from two weaker players to two
stronger or a type K state. This tendency for a preference for the type
K states is clearly seen in Fiqure 11, The second rovement results in
the simultaneous decrease in both differences and therefore toward the

air equal distribution,

Using the above analysis of the processes involved, some impliea-
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tions for Caplow's types of power structures can be formulated. All
states which fall on the lower boundary represent the type three Adis-
tribution of Caplow. These distributions have one stronq nlayer and

two weak players, with the weak players equal in strength. Those states
which fall on the unper boundary represent Caplow's type two distribu-
tion, with two strong nlayers of equal strenqth and one weaker player.
All of those states which fall between these two houndaries represent
Caplow's type five structure.

Although the interior distributions are technically type five's
they also resemble either a type two or a type three structure, with
the exception of the states on the J axis which resenble neither. V‘thich
type of distribution a state resembles depends on the relativ~ size of
the differences between the first and second power positlons and the
second and third power positions. If the former difference is laraer
than the latter. the distribution resembles a type three structure- if
the Jatter difference is larqger, then the dist-ibution resembles a type
two structure,

The pure states are the exceptior ta the above diségssion hecause
the differences hetweer. the three power positions are equal. The .ure
states are, thus the clearest type five power structure. Those distri-
butions which are found between the two boundaries in Fiqures 15 nd 11
form a continuum of Zaplow's type five nower structure. These states
span the range from his vype two structure to his type three.

As Finure 11 indicates there are several different types of move-
ments within each rype of power structure. 1\t the tyne three houndary

there are two types of movenents . one towmrd tie type oan distriburion
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(all equal) and one toward the type two distribution. The latter move-
ment occurred when there were extreme differences between the power cf
the three participants. These points include the initial states for

the type L states. The former riovement predominated on the boundary and
on the type five structures between the boundary and the J axis. In the
type two power structures the predominant moverment uas toward the type
one or all equal state. The exceptions to this were the states with
extreme differences between the participants, with these states moving
toward a2 pure type two power structure.

An interesting result of this visual representation was to indicate
that the triads in the pure type five distributions preferred to move
toward a type two power structure than to a tyne three structure, This
tendency to prefer type twe distributions decreased as the DRS of the
state decreased, and the power structure approached the type one or all
equal state.

The implications for Caplow's types and for theories about groun
processes in general are quite clear. fAiven the opportunity to choose
between a type two distribution, characterized by two strong players
and one weak player, and a type three distribution, characterized by one
strona player and two weaker players, the triads, in this experiment,
preferred the former to the latter. In other viords, aroups prefer dis-
t: ibutions of points in whick there are two strona nlayers of relatively
equal strength and one weak player with considerahly less strenqth, to
distributions of one stronc r and two weaker nlayers.

In summary, although thz mode!l did not fit the data, it afforded

the opportunity to test hypotheses abcut conflict situations. There
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was much evidence to indicate that more than two proccesses were invol-
ved ‘n these situations. Through the test of the rmodel and the visual
representation generated b the model insights into the interoersonal
process occur,ing within the truel were obtained. The test of the model
allowed for the rejection of the sinqgle, simpie assumpton that all
participants attack their stroncer aitack choice, and additiona! examina-
tion of the data explored more complex alternatives.

It is through this type of quantification, and axiomatization of

psychologica! processes, that allows for the acceptance or rejection

of theories. The results of this experiment indicate to what extent
even neqative results can advance knowledge. MNespite the inability of

the nodel to predict the interpersonal processes of the truel, it

served well the function of validating and testing the assumptions about
L d the processes. 7 offered the framework within which it was possible
to define particalar processes that were in operation within the truel

and it gave the opportunity to test other predictions about the processes

H involved.
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instructions

This is an experiment in decision making. The experiment is a
game consisting of several moves and t will keep track of each move
that is made.

Ye will play several games. To beqin each game, each player will
be assigned & specified number of points. These points will be dis-
played on the scoreboard behind me. For the first game player Argon will
have ___ ooints, player Boron will have __ points, and player
Krypton will have ____ points.

The game consists of moves, each move consisting of each of you
taking a point away from one of the other nlayers. You are required to
take a point awzy on each move, but you may choose from which other
player. You may not take a point from yourself, ‘then a point is
taken away from a player it belongs to no one and is taken out of the
game. ‘'hen a player lesses all of his points he is out of the game.
The game is ended when only one player has points remaining, he is the
winner. It Is possible for no one to win, i.e. two or more players
may run out of points on the same nove.

At the end of the experiment a number will be chosen at random
from this glass. This number represents a game and the winner of that
game wins the three dollars. This number corresponds to the otder
in which the games were played, for instance if the number three were
chosen, the wir-er of the third game would win *he three dollars. The
other two player will receive 75¢. |If the number chosen represents a
game in which there was no winner, i.e. a tie, then all three of you will

receive 75¢.
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The front of your cubical is open so you may see the scoreboard
and so you may communicate with me. 1In your cubicals there are three

cards with the three names that will be used in the experiment. It

is with these cards that vou will indicate to ~e which of the other
two players vou wish to attack. n each move of the game hold up the
card with the nane of the player you choose., After you have indicated

who you wish to attack | will record your choice and then tell you to

put your cards down. i will then read who took a point from whom and
renove the point from the board.

Some people like to keep track of which games they have won. It
is for this reason that the paper and pencils have been placed in your
cubicals.

The purpase of the partitions is to keep you from knowing which
of the players the other names on the board represent, so please dn not
talk or attempt to communicate, in any way, with the other players.
'oises also make you identifiabhle to the other players, so please refrain
from making noises of any kind during or between qames.

Are there any questions? If not hold up the card with the name

of the player you wish to attack on the first iwove of the name.
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